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Introduction
Closed-form solutions for the bearing capacity of shallow footings are often used to verify finite 
element elastic-plastic formulations, since the bearing capacity equations are largely based on 
the soil being perfectly plastic. The objective here is to compare the ultimate bearing pressure 
from closed-form solutions with the results from a SIGMA/W analysis.

Background
The ultimate bearing pressure of a continuous strip footing at the ground surface is:

𝑞𝑢𝑙𝑡 = 𝑁𝑐𝑆𝑢 +
1
2

𝛾𝐵𝑁𝛾
Equation 1

where  is the undrained strength,  is related to overburden pressures at the footing level,  is 𝑆𝑢 𝑞  𝐵

the footing width and  is the unit weight of the soil.  Bearing capacity factors , , and  will 𝛾 𝑁𝑐 𝑁𝑞 𝑁𝛾

be taken from two different sets presented by Bowles, J.E. (1988) p. 116 & p. 118). Scanned 
copies of the tables are presented below for convenient reference (Table 1 and Table 2).
A quick glance at the two sets of bearing capacity factors reveals that they give quite different 
ultimate bearing pressures. This is common amongst the bearing capacity parameters 
presented by various authors, as discussed by Bowles, J.E. (1988).

Table 1. Bearing capacity factors from Table 4-1 in Bowles, J.E. (1988).
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Table 2. Bearing capacity factors from Table 4-2 in Bowles, J.E. (1988).

Numerical Simulation
Figure 1 presents the model domain and finite element mesh used in this example.  There are 
three analyses in the Analysis Tree (Figure 2).  The first analysis is an in situ, gravity activation 
analysis that acts as the Parent to the frictional and undrained analyses.  Both the frictional and 
undrained analyses use the Load/Deformation analysis type.

Figure 1.  The bearing capacity problem configuration.
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Figure 2.  Analysis Tree for the Project.

The soil is assumed to have a unit weight of 20 kN/m3, elastic modulus of 100,000 kPa, and 
Poisson’s ratio of 0.334.  The footing width is 2 m. The bearing capacity analysis for the 
frictional case is completed using a friction angle of 30 degrees and the Mohr-Coulomb material 
model.  The bearing capacity analysis for the undrained case is completed using an undrained 
strength of 100 kPa and the Tresca material model.  
The mesh consists of 8-noded quadrilateral elements with 4 point integration.  The depth is 2x 
the footing width and the length is 4x the footing width. The left side is the centre-line symmetric 
axis, and so only half of the problem is required for the numerical analysis. The actual footing 
width is 2 m (1 m in the finite element analysis).
The footing loads are applied as a displacement boundary condition function (Figure 3).  The 
footing is being pushed into the ground at a constant rate, and SIGMA/W computes the 
equivalent forces required for the specified displacement.  The bearing capacity analyses for the 
frictional and undrained cases are being completed in 32 load steps with a total vertical 
displacement of -0.02 m.32 load steps
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Figure 3.  Vertical displacement function for the footing load.

Results and Discussion
Figure 4 presents yield zone and displacement pattern for the frictional case.  The yield zone 
develops with a log-spiral form, which is in agreement with theoretical predictions.  The greatest 
displacements are confined to the yield zone.  Figure 5 shows the load-deformation response at 
the base of the footing and indicates an ultimate bearing capacity of about 320 kPa.  The 
closed-form bearing capacity equation is given by:

𝑞𝑢𝑙𝑡 =
1
2

𝛾𝐵𝑁𝛾 =
1
2

(20)(2)𝑁𝛾
Equation 2
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The bearing capacity factor  ranges between 15.1 or 19.7 according to the above tables, N

which corresponds to an ultimate bearing capacity ranges between 302 kPa to 394 kPa.

Figure 4.  Log-spiral yield zone and displacement pattern.  

a) load-deformation curve
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Figure 5.  Load-deformation curve for the frictional soil case.

Figure 6 presents the yield zone and displacement pattern for the undrained case.  The 
displacement pattern is circular and the yield zones form triangular wedges beneath the footing.  
Figure 7 shows the load-deformation response at the base of the footing and indicates an 
ultimate bearing capacity of about 550 kPa.  The closed-form bearing capacity equation is given 
by:

𝑞𝑢𝑙𝑡 = 𝑁𝑐𝑆𝑢 Equation 3

The bearing capacity factors for this case are 5.14 or 5.70 according to the above tables.  The 
ultimate bearing capacity, therefore, ranges between 514 and 570 kPa.

5



GeoStudio Example - Footing load on Mohr-Coulomb soil

Figure 6.  Circular displacement pattern with ‘wedge’ failures beneath the footing.   

a) load-deformation curve
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Figure 7.  Load-deformation curve for the undrained case.

Summary and Conclusions
Bearing capacity problems can be particularly difficult to simulate for a number of reasons.  The 
elements beneath the corner of the footing are pulled into tension, and can undergo large 
deformations.  The finite element matrices can become ill-conditioned, and a solution could 
become difficult.  The more pertinent issue, however, is the continued redistribution of the 
unbalanced forces once the yield zone is fully developed (i.e. global failure is occurring).  The 
convergence requirements (i.e. number of iterations) can be demanding, resulting in long 
computational times and ‘drift’ or undulations (e.g. Figure 5) of the load-deformation curves.  
Stated another way, it is numerically difficult to follow the failure path because a global failure 
has occurred.   
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