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Introduction
This example demonstrates how to parameterize the Soft Soil Cap constitutive model from 
laboratory data. The parameters are then used in numerical simulations of the laboratory tests 
and the simulated results are compared with the measured data and analytical solutions. 

Formulation
A brief overview of the soft soil cap model is provided as a prerequisite to the parameterizing 
procedure. Details of the formulation are presented in the reference book (Seequent ULC, 
2024). Note the following in reference to Figure 1:

1. The stress-strain response is assumed linear in  space.𝜀𝑣 ‒ ln (𝑝' + 𝑐'cot 𝜑')
2. Isotropic compression of an overconsolidated soil produces a stress-strain response that 

tracks along the overconsolidation line, which has a slope .𝜅 ∗

3. Continued isotropic compression causes the stress path to intersect the yield surface 

( ), at which point the stress-strain path tracks along the normal compression line, 𝑝 '
𝑝

which has a slope . The size of the elliptical yield surface – which encloses the purely  𝜆 ∗

elastic zone – expands to pass through the current stress state. 
4. Unloading causes the stress path to track inside the yield locus and the stress-strain 

path to track along the unloading-reloading line. Reloading to the expanded yield locus 
will once again cause the soil to yield. 
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Figure 1.  Soft Soil Cap model: response to isotropic compression.

Note the following in reference to Figure 2:
1. The deviatoric loading condition occurs when the major and minor principal effective 

stresses are not equal. 
2. The stress path reaches the elliptical yield surface at a point away from horizontal axis.

3. In a  space, the overconsolidation and unloading-reloading phases 𝜀𝑣 ‒ ln (𝑝' + 𝑐'cot 𝜑')
can still be considered as a line with the slope of ; however, the normal consolidation 𝜅 ∗

phase is not necessarily a straight line for a general anisotropic loading condition.
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Figure 2.  Soft Soil Cap model: response to a deviatoric loading condition.

Note the following in reference to Figure 3:
1. The Mohr-Coulomb failure criterion is assumed in the Soft Soil model.
2. The slope of the failure line can be expressed in terms of the effective friction angle in 

the Mohr-Coulomb failure criterion.
3. The yield surface is an ellipse in which the peak points pass through a straight line with a 

slope of . This slope can be expressed in terms of the other model constants (i.e., , 𝑀 𝜆 ∗

,  and ).𝜅 ∗ 𝐾𝑁𝐶
0 𝜇𝑠

4. The over-consolidation ratio is the ratio between the maximum isotropic stress 
experienced by the sample and the current isotropic stress of the sample.

5. For a stress state inside the yield surface, the stress-strain response is elastic, and the 
compliance matrix is diagonal.

6. After reaching the yield surface and as it expands, the sample response becomes 
elastic-plastic and non-diagonal coupled components appear in compliance matrix. 
Incremental strains in this condition are the summation of elastic and plastic strains and 
so the current stress ratio plays a key role in the sample response. 

Elliptical yield function

Plastic incremental strains

Elastic incremental strains

Over Consolidation Ratio

Normal 
consolidation

Over 
consolidation

Aspect ratio parameter

Figure 3.  Soft Soil model: key ingredients of the formulation.

Table 1 summarizes the parameters of the Soft Soil model:
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Table 1. Parameters for the Soft Soil model

Parameter Symbol

Effective friction angle 𝜑'

Effective cohesion 𝑐'

Slope of normal compression line in the -  space𝜀𝑣 ln (𝑝' + 𝑐'cot 𝜑') 𝜆 ∗

Slope of the unloading-reloading line in the -  space𝜀𝑣 ln (𝑝' + 𝑐'cot 𝜑') 𝜅 ∗

The coefficient of earth pressure for the normally compressed state 𝐾𝑁𝐶
0

Poisson’s ratio 𝜇𝑠

Over consolidation ratio 𝑂𝐶𝑅

Initial void ratio ( )𝑒 =  𝑣 – 1 𝑒

Parameterization Procedure
Figure 4 provides a conceptual workflow for the procedure. The parameterization procedure is 
premised on availability of drained triaxial test results. The parameterization procedure 
produces the constants for a specific constitutive model. These constants are then used as 
inputs for the model used in a numerical simulation. Finally, the parameterization is verified by 
comparing the simulated and measured results.

Figure 4.  Conceptual workflow of the parameterization procedure.

Step 1
The first step is to determine the slope and the y-intercept of the Mohr-Coulomb failure line and 
subsequently the effective friction angle and the effective cohesion of the soil (Figure 5). Since 
stress paths of samples with different initial confining stresses eventually tend to the failure line, 
the Mohr-Coulomb failure line is a straight line that passes through failure points. Let us call the 
slope of this line as  and its y-intercept as . These two constants can be calculated using 𝑀𝑐 𝑞𝑐

the method of least squares:
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𝑀𝑐 =
𝑛∑𝑞𝑓𝑝 '

𝑓 ‒ ∑𝑞𝑓∑𝑝 '
𝑓

𝑛∑(𝑝 '
𝑓)2 ‒ [∑𝑝 '

𝑓]2 Equation 1

𝑞𝑐 =
∑(𝑝 '

𝑓)2∑𝑞𝑓 ‒ ∑𝑞𝑓𝑝 '
𝑓∑𝑝 '

𝑓

𝑛∑(𝑝 '
𝑓)2 ‒ [∑𝑝 '

𝑓]2 Equation 2

The effective friction angle  is the angle of the failure line relative to the horizontal axis in 𝜏-σ 𝜑'

space and the cohesion is the y-intercept of this failure line. As a result,  and  can be 𝜑' 𝑐'

calculated from  and . 𝑀𝑐 𝑏𝑐

𝜑' = sin ‒ 1
3𝑀𝑐

6 + 𝑀𝑐
Equation 3

𝑐' =
𝑞𝑐

𝑀𝑐cot 𝜑' Equation 4

Failure Line

Drained Triaxial 
Stress paths

Figure 5.  Determining the strength properties.

Step 2
The second step is to determine the effective Poisson’s ratio  (Figure 6). Poisson's ratio is 𝜇𝑠

defined as the ratio of the change in the element’s radial strain to the change in its axial strain, 
in a drained test. Poisson’s ratio is determined from the elastic (overconsolidated) response and 
its value is assumed to remain constant during loading. Consequently, in a drained triaxial test, 
the method of least squares can be applied on the purely elastic part of the curve in axial strain-
radial strain space to estimate the value of the effective Poisson’s ratio.

𝜇𝑠 =‒
∑𝜀1𝜀3

∑𝜀1
2 Equation 5
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Figure 6.  Determining Poisson’s ratio .𝜇𝑠

Step 3
The third step is to determine the slope of the overconsolidation line  (Figure 7). The trends of 𝜅 ∗

the measured values of  and  in the overconsolidated portions of the graph can be fit by a 𝑝’ 𝜀𝑣

straight line. The slope and the y-intercept of this line can be calculated directly using the 
method of least squares (blue line in Figure 7 and Equation 6 and Equation 7). An alternative 
method for estimating the constant  is to use the corresponding parameters measured during 𝜅 ∗

an unloading-reloading loop (red line in Figure 7 and Equation 9 and Equation 10). For a 
normally consolidated soil, this unloading-reloading process is required for estimating the 
constant . The method of least square can again be used to calculate the slope and the y-𝜅 ∗

intercept of this straight line.

𝜅 ∗ =
𝑛∑𝜀𝑣,𝑜𝑐𝑥𝑜𝑐 ‒ ∑𝜀𝑣,𝑜𝑐∑𝑥𝑜𝑐

𝑛∑𝑥 2
𝑜𝑐 ‒ [∑𝑥𝑜𝑐]2 Equation 6

𝜀 0
𝑣,𝑜𝑐 =

∑𝜀𝑣,𝑜𝑐∑𝑥 2
𝑜𝑐 ‒ ∑𝑥𝑜𝑐∑𝜀𝑣,𝑜𝑐𝑥𝑜𝑐

𝑛∑𝑥 2
𝑜𝑐 ‒ [∑𝑥𝑜𝑐]2 Equation 7

where

𝑥𝑜𝑐 = ln (𝑝 '
𝑜𝑐 + 𝑐'cot 𝜑') Equation 8

and

𝜅 ∗ =
𝑛∑𝜀𝑣,𝑢𝑟𝑥𝑢𝑟 ‒ ∑𝜀𝑣,𝑢𝑟∑𝑥𝑢𝑟

𝑛∑𝑥 2
𝑢𝑟 ‒ [∑𝑥𝑢𝑟]2 Equation 9

𝜀 0
𝑣,𝑢𝑟 =

∑𝜀𝑣,𝑢𝑟∑𝑥 2
𝑢𝑟 ‒ ∑𝑥𝑢𝑟∑𝜀𝑣,𝑢𝑟𝑥𝑢𝑟

𝑛∑𝑥𝑢𝑟
2 ‒ [∑𝑥𝑢𝑟]2 Equation 10
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where

𝑥𝑢𝑟 = ln (𝑝 '
𝑢𝑟 + 𝑐'cot 𝜑') Equation 11

Figure 7.  Determining the slope .𝜅 ∗

Step 4
The fourth step is to determine the slope of the normal compression line  (Figure 8). It should 𝜆 ∗

be noted that  is the slope of the normal consolidation line in an isotropic loading condition. 𝜆 ∗

For other loading conditions, however, the normal consolidation branch is not necessarily linear, 
so the slope of its curve is not equal to . Based on the Soft Soil model’s framework, that is a 𝜆 ∗

reformulated version of the Modify Cam Clay framework, it can be proven that there is another 
alternative space in which the sample response is linear even in a normal consolidation branch. 
The x and y axes in this space are functions of the measured parameters ,  and , constants 𝜀𝑣 𝑝’ 𝑞

estimated in the previous steps (i.e., ,  and ), and the ellipse aspect ratio :𝜑' 𝑐' 𝜅 ∗  𝑀

𝑥 = ln [(𝑝' + 𝑐'cot 𝜑')(𝑀2 + 𝜂2)] Equation 12

𝑦 = 𝜀𝑣 ‒ 𝜅 ∗ ln (𝑝' + 𝑐'cot 𝜑') Equation 13

Where the stress ratio  is defined as:𝜂

𝜂 =
𝑞

𝑝' + 𝑐'cot 𝜑' Equation 14

The overconsolidation and unloading-reloading branches are both horizontal in this new space. 
The normal consolidation branch is a straight line. The slope of this line represents the 
difference between the isotropic normal consolidation slope  and the over consolidation slope 𝜆 ∗

. Given that the constant  is already estimated in the previous step, the constant  can be 𝜅 ∗ 𝜅 ∗ 𝜆 ∗

found by applying the method of least squares on the proposed space:
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𝜆 ∗  = 𝜅 ∗ +
𝑛∑𝑥𝑖𝑦𝑖 ‒ ∑𝑦𝑖∑𝑥𝑖

𝑛∑𝑥2
𝑖 ‒ [∑𝑥𝑖]2 Equation 15

According to Equation 12, the value of the ellipse aspect ratio  is required to determine the  𝑀

isotropic normal consolidation slope . This aspect ratio, however, is affected by the value of 𝜆 ∗

 as follows:𝜆 ∗

𝑀2 = [3(1 ‒ 𝐾𝑁𝐶
0 )

1 + 2𝐾𝑁𝐶
0

]2 +
3(𝜆 ∗ ‒ 𝜅 ∗ )

1 + 2𝐾𝑁𝐶
0

3(1 ‒ 𝐾𝑁𝐶
0 )

𝜆 ∗ ‒
1 + 𝜇𝑠

3(1 ‒ 2𝜇𝑠)
𝜅 ∗ Equation 16

Therefore, calculating the values of  and  requires an iteration process. This process 𝜆 ∗ 𝑀
includes:

1. To guess a value for ,𝜆 ∗

2. To calculate the corresponding aspect ratio  using Equation 16,𝑀

3. To calculate a new value for  using Equation 15 and Figure 8, and𝜆 ∗

4. To update the value of  and to repeat the procedure from the stage 1.𝜆 ∗

Figure 8.  Determining the slope .𝜆 ∗

Step 5
The fifth step is to determine the over-consolidation ratio  for each specimen (Figure 9). 𝑂𝐶𝑅

This requires identification of the mean effective pressure  (see Figure 2) at which the 𝑝’𝑦
response transitions from elastic to elastic-plastic; that is, from overconsolidated to normally 
compressed. More specifically, the  is the ratio between the isotropic pre-consolidation 𝑂𝐶𝑅

pressure  and the isotropic initial pressure . As stated earlier, the response of the sample 𝑝’𝑝 𝑝’𝑖
changes from elastic to elastic-plastic only if a stress path engages the yield surface. As a 
result, for a stress path that is not necessarily isotropic, the yield pressure  is less than the 𝑝’𝑦
isotropic pre-consolidation pressure, . These two pressures, however, are not independent. 𝑝’𝑝

8



GeoStudio Example - 

For example, in a drained triaxial test with a stress path of 3:1, the deviatoric stress at the yield 
surface is three times the difference between the yield and the initial pressures (Equation 17). 
The isotropic pre-consolidation pressure, , can be expressed in terms of yield stresses using 𝑝’𝑝
the yield function of the elliptical surface (Equation 18). Finally, the OCR for each sample is 
estimated as a ratio between the isotropic pre-consolidation pressure,  and the isotropic initial 𝑝’𝑝
pressure  (Equation 19).𝑝’𝑖

𝑞𝑦 = 3(𝑝 '
𝑦 ‒ 𝑝'

𝑖) Equation 17

𝑝 '
𝑝 = 𝑝 '

𝑦 +
𝑞2

𝑦

𝑀2(𝑝 '
𝑦 + 𝑐'cot 𝜑') Equation 18

𝑂𝐶𝑅 =
𝑝 '

𝑝

𝑝'
𝑖

=
𝑝 '

𝑦

𝑝'
𝑖

+
9(𝑝 '

𝑦 ‒ 𝑝'
𝑖)2

𝑀2(𝑝 '
𝑦 + 𝑐'cot 𝜑')𝑝'

𝑖
Equation 19
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Figure 9.  Determining the over-consolidation ratio .𝑂𝐶𝑅

Application
Figure 10 to Figure 14 summarize the parameterization procedure as applied to the results of 
three (A1, A2, and A3) drained triaxial tests on the Bothkennar clay (McGinty, 2006). Table 2 
provides a summary of the model constants obtained from the parameterization procedure.

Figure 10.  Step 1: determination of the strength properties.
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Figure 11.  Step 2: determination of Poisson’s ratio ( ).𝜇𝑠

Figure 12.  Step 3: determination of the slope .𝜅 ∗

Figure 13.  Step 4: determination of the slope .𝜆 ∗
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Figure 14.  Step 5: determination of the overconsolidation ratio ( ).𝑂𝐶𝑅

11



GeoStudio Example - 

Table 2. Bothkennar clay model constants for the Soft Soil model

Parameter Symbol

Effective angle of shear resistance 𝜑' 33.5°

Effective cohesion 𝑐' 0.712 kPa

Slope of normal compression line 𝜆 ∗ 0.176

Slope of the unloading-reloading line 𝜅 ∗ 0.035

Poisson’s ratio 𝜇𝑠 0.353

Over consolidation ratio (A1, A2, A3) 𝑂𝐶𝑅 1.789; 1.163; 1.214

Initial void ratio (A1, A2, A3) 𝑒 1.515; 1.447; 1.310

Verification
Figure 15 through Figure 17 compare the measured, simulated, and analytical results for tests 
A1, A2, and A3. Discrete scatter points are laboratory results and continuous black lines are the 
results of the SIGMA/W simulations. The analytical results of the Soft Soil model are also shown 
in these diagrams as orange dashed lines. Refer to the associated GeoStudio project file to 
explore the analysis definitions and simulated results in detail. 
The full compatibility of analytical and numerical curves shows the reliability of the model’s 
implementation in SIGMA/W. In addition, the acceptable consistency between the laboratory 
results and simulations indicates the capabilities of the calibrated Soft Soil model in predicting 
the responses of the clay samples. The parameterization procedure relies on linear regression; 
consequently, the simulated/analytical results will generally provide a better fit to those 
specimens with measured data that was nearest the trend lines. 
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Figure 15. Comparison of simulated, analytical, and measured results for specimen A1.
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Figure 16. Comparison of simulated, analytical, and measured results for specimen A2.
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Figure 17. Comparison of simulated, analytical, and measured results for specimen A3.

Summary
The calibration procedure of the Soft Soil model was provided in five straight forward steps. The 
results of the drained triaxial tests showed to be the only laboratory dataset required for 
parameterizing the model. The material constants were used in numerical simulations and the 
results were found to compare favorably with both the analytical solution and corresponding 
laboratory results.
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