
Topics in Gridding

Overview
When dealing with two-dimensional data, it is useful to represent the data by determining its value at
points located equally far apart at the nodes of a grid, as shown in the following figure:

Data in grid format is suitable for a number of two-dimensional processes, such as image processing
and two-dimensional filtering.

The values at the grid nodes can be determined by taking readings at the node locations. However, in
practice this is seldom convenient and it is more likely to have data that has been collected at random
locations, or which has been collected at a relatively high sample density along more widely separated
parallel lines. Such raw data is commonly referred to as XYZ data because each data point has an
(x,y) location and one or more measured (z) values. The process of gridding takes XYZ data and
interpolates the readings to determine the values at the nodes of a grid. The resultant grid data set is
known as a grid.

Geosoft provides three programs that interpolate raw XYZ data to produce a grid:

1. RANGRID interpolates the data by fitting a two-dimensional surface to the raw XYZ data in
such a way that the curvature of the surface is minimized. RANGRID is ideal when data is
sparsely sampled and the surface is expected to be relatively smooth or continuous between
data points.

2. KRIGRID interpolates the data using kriging. Kriging is a geostatistical method that determines
the most probable value at each grid node based on a statistical analysis of the entire data
set. Based on Kriging statistics, KRIGRID is also able to produce an error grid, which gives an
indication of the degree of confidence at each grid node. KRIGRID is ideally suited to
geochemical or other geological sample-based data (as opposed to geophysical data).
Because kriging can be very slow, the size of a data set may be a limiting factor in choosing
to use KRIGRID.
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3. BIGRID is a bi-directional gridding program designed to rapidly interpolate roughly parallel
line-based data. BIGRID uses linear, minimum curvature or Akima splines to interpolate grid
nodes between lines in the direction of the overall trend of the data, which is usually
perpendicular to the survey lines. BIGRID can be 10 to 100 times faster than RANGRID, and
up to 1000 times faster than KRIGRID. It is the only program that can take advantage of a
strong line-to-line correlation of otherwise narrow features in line data. BIGRID cannot be
applied to randomly distributed XYZ data. Line data that is measured along orthogonal lines
is also not well suited to BIGRID.

RANGRID, BIGRID or KRIGRID?
Use BIGRID if the data is collected along lines that are roughly parallel, as in the

following examples:

BIGRID is ideal in these situations, especially if there is a high sample density down the lines relative to
the line separation. Furthermore, BIGRID is able to join narrow features that extend from line to line
perpendicular to the line direction. Note that in the middle example, BIGRID is not able to use the tie
lines because of the way the gridding algorithm works. If the data on the tie lines is important,
RANGRID or KRIGRID should be used.

Use RANGRID or KRIGRID when the XYZ data is not sampled along lines that run in roughly the same
direction. Such data are often called Random because they give a random appearance when the data
locations are plotted. Also, line data in which survey lines are orthogonal (or have ‘random’ directions)
should be gridded with RANGRID or KRIGRID. The following figure illustrates these types of data:

If the data is relatively smooth between sample points or survey lines, RANGRID should be used. If the
data may be variable between sample locations, or is known to be statistical in nature (such as
geochemical data), is poorly sampled or clustered, use KRIGRID.
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The Nyquist frequency and aliasing
The terms “aliasing” and “Nyquist frequency” are often used to describe problems and limitations in
gridded data sets. Anyone who creates gridded data, or who works with gridded data should
understand what these terms mean and their importance in gridding.

The Nyquist frequency is the highest frequency (shortest wavelength) that it is possible to measure given
a fixed sample interval. It is defined by the expression

where d is the sample interval.

Gridded data sets are limited in the detail of information that they contain by the Nyquist frequency
(1/(2*cell size)). Original survey data is limited in the detail of information that has been measured by
1/(2*nominal sample interval). Line-based surveys are limited in their down-line detail by 1/(2*sample
interval) and in their across-line information by 1/(2*line separation). In other words, if it has not been
measured, we can’t see it.

Aliasing results when the actual data that is being sampled contains significant information that has a
shorter wavelength (higher frequency) than the Nyquist. For example, in line-based surveys, we often
see short-wavelength features along lines that are too poorly sampled across lines to be properly
represented in a grid. The result is a “noisy” appearance in the grid that can be seen between survey
lines. A important problem with aliasing phenomena is that you often cannot see the aliasing because
it can be hidden by the chance locations of the samples. Inversely, the chance locations of samples can
give the appearance of much longer wavelength features than really exist.

THIS FIGURE ILLUSTRATES THE PROBLEM OF ALIASING THAT CAN RESULT FROM INSUFFICIENT SAMPLING OF INFORMATION. IN THIS CASE THE

DATA BEING SAMPLED IS A SIMPLE SINE. IN THE TOP PROFILE, AN EVEN SAMPLING OF THE DATA IMPLIES A SINE FUNCTION, BUT AT THE

WRONG WAVELENGTH. THE MIDDLE PROFILE SHOWS A MORE RANDOM SAMPLING, AND THE IMPRESSION IF ANOMALOUS HIGH AND LOW

AREAS IS COMPLETELY FALSE. THE BOTTOM PROFILE SHOWS THE RESULT OF SAMPLING AT JUST UNDER THE NYQUIST FREQUENCY, WHICH

PRODUCES ALMOST THE CORRECT RESULT.
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The Nyquist frequency and the effects of aliasing must be considered at a number of stages in the
creation and use of gridded data:

1. The design of surveys should take into account the expected spatial size of information that is
measured, and the detail required for the data to be useful. Note that because of aliasing, it
may be necessary to sample to a higher density than is required for the interpretation of the
data. This allows you to remove aliased noise from the data as part of the gridding process (if
it isn’t measured, you can’t remove it either!).

2. Pre-gridding filters should be applied to data to remove wavelengths that may be aliased at the
chosen grid cell size.

3. The grid cell size must be chosen to sample the required detail in the data.

4. When working with gridded data, you cannot see detail smaller than the grid cell size.

Minimum curvature gridding with RANGRID
RANGRID fits a minimum curvature surface to the data points using a method similar to that described
by Swain (1976) and Briggs (1974). A minimum curvature surface is the smoothest possible surface
that will fit the given data values.

RANGRID first estimates grid values at the nodes of a coarse grid (usually 8 times the final grid cell
size) based on the inverse distance average of the actual data within a specified search radius. If there
is no data within that radius, the average of all data points in the grid is used. An iterative method is
then employed to adjust the grid to fit the actual data points nearest the coarse grid nodes. Once an
acceptable fit is achieved, the coarse cell size is divided by 2 and the same process is repeated using
the coarse grid as the starting surface. This is process repeated until the minimum curvature surface is
fit at the final grid cell size.

Cell Size Selection

Grid cell size should not be much less than half the nominal data point interval found in the areas of
interest. If a cell size is too small it will result in RANGRID consuming more processing time than
necessary. A small cell size may also require a reduction in the iteration tolerance and an increase in
the number of iterations to achieve an acceptable result.

Clustered data can also be gridded to a coarser grid cell size that would normally be desired. This will
naturally de-alias the data because of the wider grid cell size. The grid can be re-gridded afterwards to
a smaller cell size.
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Controlling Grid Quality

The RANGRID algorithm is iterative. This means that the modelled surface approaches the ideal
minimum curvature surface in steps. The following figure shows a profiles for a different numbers of
iterations through a set of observed points.

Note that the modelled surface will only reach the true minimum curvature surface after an infinite
number of iterations, which is impractical. You control when to stop iteration through the use of three
controls:

• tolerance

• percentage of points required within the tolerance

• maximum iterations

Iterations at any coarseness level will stop when the required percentage of points are within the
tolerance of the true value, or when the maximum iterations have been reached. By default, the
tolerance is set to 1% of the data range, the percentage is set to 99%, and the maximum iteration
value is set to 100. We have found these defaults to be acceptable in most situations. However, if you
are dealing with a mixture or sparse and detailed data, or if you intend to extract short wavelength
information from the grid, you may need to force more iterations to be applied to the data. To do this:

1. Set a smaller tolerance in order to force more iterations.

2. Increase the percentage of points that must pass the tolerance test. This will normally only make
a difference when you have a few points or areas in the data set that are not being honored by
the grid.

3. Increase the maximum number of iterations if the current maximum is limiting the iterations and
even more iterations are required. Note that 100 iterations should be sufficient in most cases
and 200 iterations are considered extreme.

De-aliasing clustered data

Clustered data, or data with areas of small sample interval separated by larger undersample areas,
can cause the minimum curvature surface to have undesirable overshoots. If these are observed in your
data, the following techniques can help to minimise the problem.

1. Increase horizontal tension. This will have the effect of stretching the surface over the observed
points and minimise over-shoot. However, this can create undesirable ‘sharpness’ around
observed points.

2. Increase the low-pass de-sampling factor, which is the number of grid cells over which average
data points before gridding. This effectively removes higherfrequency detail that may be
causing over-shoots.

3. Grid to a larger cell size, then re-grid the grid to the desired working cell size. This is similar to
the low-pass de-sampling technique since the data will be averaged for the new cell size, but
the re-gridding process can be much faster, and the effect of the coarser gridding staged in
RANGRID will be more important in the final result.

4. Set the blanking distance to not include the over-shoot areas of the grid. The blanking distance
is the maximum distance from actual data points to be included in the final grid.

Strengths

RANGRID can work with any number of data points in any location. Data does not have to be
organized as lines.

Minimum curvature gridding does not impose a directional bias in the data, and it is best for data that
does not have a dominant trend direction. This is the principle strength of minimum curvature gridding
over bi-directional gridding of line data. 

Minimum curvature gridding can include ties line information in the gridding process. Note that tie lines
must be properly levelled to the survey lines.
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Weaknesses

Minimum curvature gridding does attempt to find the minimum curvature surface, but the resulting
surface is not a true minimum curvature surface. Because of the way the iterative process works, the
final grid surface will be closest to the required surface at the original observation locations. This
produces a ‘pimpling’ effect in filtered products that enhance the high-frequency parts of the data.

When gridding line data, minimum curvature gridding is not able to strengthen trends perpendicular to
the survey lines. This can result in a ‘bulls-eye’ or ‘string-of-beads’ effect for features that have a narrow
width with respect to the survey line direction.

Clustered data also present a challenge to minimum curvature gridding. The minimum curvature surface
in highly sample parts of a clustered data set can produce undesirable highs or lows in the more
poorly sampled parts of the data. Increasing horizontal tension can help to control this problem, but the
resulting grid will have more curvature around data points. You can also apply a low-pass de-sampling
factor to de-sample-the data to a coarser separation before gridding. This will remove the effect of
shorter-wavelength features in the clustered areas.

RANGRID can be quite slow for very large data sets.

Bi-directional gridding of line data with BIGRID
The bi-directional method of gridding, which is used in BIGRID, is ideal for line oriented data because it
inherently tends to strengthen trends perpendicular to the direction of the survey lines.

The gridding process is carried out in two principle steps:

1. Each survey line is interpolated along the original survey path to yield data values at the
intersection of each required grid line. Note that horizontal tie lines cannot be used in this
process because they do not intersect the horizontal grid lines (or vise-versa for vertical tie
lines, horizontal survey lines).

2. The intersected points from each line are then interpolated in the across-line grid direction to
produce a value at each required grid point. The second pass of interpolation creates
grid lines. A grid line is a series of numbers that represent all the values along a single
grid row.
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Geological trends in the data can be emphasized by the appropriate orientation of the grid so that the
second interpolation is in the direction of strike. In addition to trend enhancement, BIGRID allows the
method of interpolation to be selected independently for the down-line and across-line directions. The
interpolations available are linear, cubic spline (minimum curvature) or Akima spline.

Filtering of the line data before interpolation is also possible. BIGRID can design and apply non-linear
and/or linear numerical filters to the original line data. The use of the non-linear filter is a very effective
way to remove data spikes (undesired highamplitude short-wavelength features) from the original data.

Cell Size Selection

By default, BIGRID will choose a grid cell size that is roughly one-quarter the line separation. However,
BIGRID can have difficulty determining an accurate line separation, and we recommend that you
always choose an appropriate grid cell size. 

The grid cell size should not be smaller than one eighth the nominal line separation. If the cell size is
unreasonably small, a short-wavelength error that appears as lines perpendicular to the line direction
can result, especially if there is noise in the data.

Low-pass de-aliasing filter

BIGRID will preserve and honor all wavelength information up to the grid cell size. Unwanted short-
wavelength features can be removed by the application of a low-pass filter, which can be specified as
part of the gridding process. Note that the relatively wide survey line spacing rather than the sample
spacing down lines normally limits the Nyquist frequency for the data. The application of a low-pass
filter to remove wavelengths one half to one quarter the Nyquist wavelength defined by the line
separation may be required.

Strengths

BIGRID main strength is performance of very large data sets. The algorithm is very efficient relative to
the other gridding methods. 

Unlike minimum-curvature gridding, the gridded surface produced by BIGRID will honor the data
exactly, and the interpolation splines are exact.

BIGRID is able to enhance trends in the gridding direction, which can be very important in geologically
linear areas.

Weaknesses

BIGRID’s ability to enhance trends is also its weakness when the features in the data have short
wavelength along lines, but do not run in the grid trend direction. Such features will produce ellipsoids
and ellipsoidal ‘beads’, just as RANGRID produces ‘bulls-eyes’.

Bi-directional gridding cannot work with tie-lines, nor can it work with randomly located data.

Statistical gridding with KRIGRID
In contrast to RANGRID, which attempts to fit the smoothest possible surface to the data, KRIGRID uses
a statistical analysis of the data to predict the values at each grid node based on maximum probability
(minimum error). Because of this, KRIGRID is ideally suited to data sets that have a statistical basis, such
as geochemical and geological sample data. KRIGRID is rarely used with geophysical data, which
tends to follow a natural smooth surface.
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A fundamental step in Kriging is the creation of a Variogram, which is a graphical measure of the
statistical relationship of the sample data as a function of distance (h): two dimensions.

The variogram is calculated by going through every pair of data points, evaluating this function and
averaging values at the same distance. Below is a sample Variogram of a line-based airborne
magnetic survey:

The primary characteristic to note is the natural increase in variability as the distance between data
points (h) increases. Also, at a certain distance (called the range), the variogram becomes flat at a level
called the sill. Up to the range, the data is correlated as a function of distance. Beyond the range, the
data is not statistically correlated except that we only know that values should naturally lie within a
maximum envelope.

A third parameter used to describe the Variogram is the nugget. This is the point at which the
variogram model intersects the (d=0) axis. The nugget represents the measurement error, or
repeatability of the survey measurements.

In order to perform Kriging, a model of the ideal variogram that is appropriate for the data is required.
Kriging in OASIS montaj™ provides a number of basic model types that can be used. It is important to
note the difference between an observed variogram and the model variogram. The observed
variogram is only used as the basis for choosing an appropriate model variogram. The model
variogram is the assumed ideal variability given an infinite number of samples in an ideal model.

Power Model

The power model is the simplest model, but it is unable to effectively model data that contains a sill.
However, the linear model (power = 1) can accurately model the linearity of the variogram between
the nugget and the range. A linear behavior in the variogram at the origin is the most common in
mining geological applications. If the nominal sample interval of the data is less than the range, the
linear model is often suitable. The linear model is the only model that OASIS montaj™ can calculate
automatically from the observed variogram. The other models require you to evaluate the variogram
and set the parameters manually.
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The power model is used by default if no model is specified.

Spherical Model

The spherical model is the most common model used for geological data. It can accurately model
linearity at the origin, and it accounts for a sill. However, you must estimate the nugget, range and sill
from the observed variogram.
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Exponential Model

The exponential can also effectively model a sill, but the shape of the model between the nugget and
the range has a more gradual transition.

Gaussian Model

The Gaussian model is able to model parabolic behavior at the origin, although this is seldom found in
geological applications. With this model the sill is actually never reached, and at the range the model
is 5% less than the sill. Like the spherical model, you must specify the nugget, range and sill to use the
Gaussian model.

Kriging Error Grid

One benefit of Kriging is that it can create a grid of the standard deviation of the estimate at each grid
point. Based on statistical theory, we have 68% confidence that the estimation is correct to ±(1
standard deviation), and 95% confidence that the estimation is correct to ±(2 standard deviations).
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Grid Cell Size

The KRIGING algorithm is not sensitive to cell size. The cell size should be chosen to adequately
sample the information of interest. This is normally one-half to onequarter the nominal sample interval.

Practical Notes

The majority of geophysical data sets are statistically under-sampled, which means that the benefit of
accurate statistical estimates is diminished. The under-sampling is most easily seen by looking at the
range, is very often just beyond the nominal sample interval of the data. Because of this, it is rarely
worth the effort to accurately model the variogram for a given data set. The default linear model usually
produces the same result as a carefully modeled variogram.

The main application for Kriging is for gridding geochemical data, where statistical relationships are
more common. However, as with geophysical data, geochemical data is rarely sampled to a sufficient
density to justify the effort of careful modelling of variograms.

Kriging can produce better visual results than RANGRID for clustered data. Clustered data has regions
of very dense observations together with wide regions with few observations. In this situation RANGRID
will often produce undesirable high and low perturbations in the under-sample areas. The statistical
nature of Kriging can reduce this effect.

Kriging is also the slowest gridding technique, especially when there are many data points. It works
best with less than 500 data points, in which case the entire data set is solved in a single matrix
inversion. If there are more than 500 data points, a moving matrix is used to calculate the prediction at
each grid point. This is slower and can lead to edge effects at the limits of the smaller matrix window.

Logarithmically distributed data should be gridded using the log gridding option. This will grid the log
of the data in log space, then convert the gridded result back to linear space. This also prevents the
creation of negative values in the grid.

Trend enhancement (new application – TRENDDB)
The main challenge (and weakness) of minimum curvature gridding and bidirectional gridding is the
relatively high sample interval down survey lines relative to the much wider line separation. The high
sample interval down lines allows us to sample very detailed features perpendicular to the line
direction. However, the much poorer sampling across lines is insufficient for gridding algorithms to
interpolate accurately.

As part of the Advanced Grid Utilities Package in OASIS montaj™ 4.3, we are releasing a new
technique designed to find such trends in line data. The method locates all local maxima and minima
along each survey line, then creates a triangulated mesh of both the maxima and minima points. The
meshes are decomposed into trend line segments that do not cross and produce a maximum linearity in
a preferred direction. These ‘trend lines’ are added to the data, which can then be gridded normally
using any of the gridding programs. The trend lines will force the interpolations between lines to honor
the defined trends.

As part of this workshop we are providing a preview copy of the trend gridding GX’s. Note that the
use of the Trend Gridding GX’s requires the Advanced Grid Utilities license. The package includes:

Trend_grid.omn trend gridding menu

Trenddb.gx finds trends in the data

Trenddigi.gx interactive digitizing of trend lines

Trendpath.gx plots trend lines on a map

The principal GX in this suite is the TRENDDB GX. Following are the user parameters used by the GX.
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Data Channel for trends

The channel to find trends for.

Window for Max-Min Search

All maxima and minima found are guaranteed to be the lowest or highest values within half this
distance on either side of selected point. The distance is determined from the X and Y channel
positions, measured cumulatively from point to point.

Preferred angle for trends

The angile is the angle measured counter-clockwise from the horizontal (X-axis) in degrees.

Allowable Deviation in angle

This is the amount by which the trend angle of individual trend sections may deviate from the preferred
angle. For instance, if the preferred angle were 30 degrees, an allowable deviation of 30 degrees
would search for trends at angle from 0 to 60 degrees.

Maximum length for joins

It is usually good to set this to about twice the average line spacing. Too large a value may create
trend lines across large “empty” regions, and can increase the processing time. The value should
exceed the average line spacing, or no joining or extrema may occur.

Maximum deflection for joins

This controls the local “straightness” of joins. The deflection is the length of the perpendicular dropped
from the third point in a sequence to the line which joins the first two points. If the three points are co-
linear, this value will be zero. If the input value is left blank, no check will be made for this condition.

Minimum Length

Ignore all trend lines shorter than this. This test is applied after any resampling, and before breaking of
lines at the breaking angle. If left blank, this test is not performed.

Resampling Interval

The line may be splined at a fixed interval. For maximum effectiveness, this should be set to a value
which is a fraction of the average line spacing; this could be the along-line sample interval. This will
reinforce the data values along the trend lines. The start and end points are preserved. If left blank, this
test is not performed.

Breaking Angle

Some routines such as BIGRID require that lines increase monotonically in certain directions. Because
trend lines are often nearly parallel to the first spline direction in BIGRID, they can be multiple-valued
functions. Forcing breaks when the line direction switches "back and forth" over the first spline direction
restores the monotonic nature to the all the lines, and ensures the entire trend line is used. The first
spline direction is set in BIGRID using the “Trend Angle” parameter. (If it is left blank, this will be either
0 or 90 degrees, depending on the general flight line direction. ) Set the breaking angle to the Trend
Angle for best results. For example: If flight lines are mostly vertical, then the initial BIGRID interpolation
will be along horizontal lines. To ensure trend lines will be fully used, set the break angle to 0 degrees.

If the break angle is left blank, this test is not performed, and some trend information may not be used.

T
e
c
h
n
ic

a
l 
W

o
rk

s
h
o
p

12



Gridding References
AKIMA, H.,1970: A new method of interpolation and smooth curve fitting based on local procedures.
Journal of Association for Computing Machinery, v. 17, no. 4 pp. 589-602.

BURG, J. P., 1975: Maximum entropy spectral analysis. Unpublished doctoral dissertation, Stanford
University, 168 p.

FRASER, D. C., FULLER, B. D., WARD S. H., 1966: Some numerical techniques for application in mining
exploration. Geophysics, v. 31, no.6, pp.1066-1077.

JOURNEL, A. G., and HUIJBREGTS, Ch. J., 1978, Mining Geostatistics, Academic Press, London. 

NAUDY H., DREYER H., 1968: Essai de filtrage nonlineaire applique aux profils aeromagnetiques.
Geophysical Prospecting, v. 16, no. 2, p 171.

REID, A. B., 1980: Aeromagnetic survey design. Geophysics Short Note, v. 45, no. 5, pp 973-976.

BRIGGS, IAN C., 1974, Machine contouring using minimum curvature., Geophysics, Vol. 39, No. 1,
pp.39-48.

SMITH, W.H.F., AND WESSEL, P., 1990, Gridding with continuous curvature splines in Tension.,
Geophysics, Vol. 55, No. 3, pp.293-305.

SWAIN, C. J., 1976, A FOTRAN IV program for interpolating irregularly spaced data using the
difference equations for minimum curvature, Computers & Geosciences, Vol. 1, pp. 231-240.

T
e
c
h
n
ic

a
l 
W

o
rk

s
h
o
p

13



Analytic Signal

Overview
Nabighian (1972, 1984) developed the notion of 2-D analytic signal, or energy envelope, of magnetic
anomalies. Roest, et al (1992), showed that the amplitude (absolute value) of the 3-D analytic signal at
location (x,y) can be easily derived from the three orthogonal gradients of the total magnetic field using
the expression

From this expression you can see that the analytic signal is a direct measure of the total gradient of the
magnetic field. This is naturally a function of the distance to the magnetic source and the intensity of
magnetization. In other words, as a rule, the closer the source and the greater the anomalous field, the
greater the analytic signal. The analytic signal anomaly over a 2-D magnetic contact located at (x=0)
and at depth h is described by the expression (after Nabighian, 1972)

and

h is the depth to the top of the contact

M is the strength of magnetization

d is the dip of the contact

I is the inclination of the magnetization vector

A is the direction of the magnetization vector

Similarly, it can be shown that the analytic signal anomaly over a 2-D magnetic sheet

(or dyke) is described by the expression
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The analytic signal anomaly in all cases is a simple bell shaped function in which all directional terms
are contained in the amplitude factor α, which is a constant. Therefore, only the amplitude of the
analytic signal is affected by the vector components of the model. The shape of the analytic signal
depends only on depth. It is this characteristic of the analytic signal that makes it very useful for
interpreting potential field anomalies. This also makes analytic signal a practical alternative to
reduction-to-the-pole (RTP) when the goal is to simplify magnetic anomalies.

This shows the results of analytic signal processing over a simple prism model at different magnetic
latitudes and with different remnant magnetization. The use of a 3- D perspective presentation is to
clearly show the how the amplitude of the analytic signal peaks over the edges of the model. Note that
the amplitude of the peaks is proportional to the magnetization at that edge as defined by equation
(5). In this case, the prism width is four times the depth. For widths less than the depth, the peaks of the
analytic signal will merge.

Application in regional interpretation
For regional geologic interpretation, an Analytic Signal map can be though of a approximation of
the distribution of magnetic minerals in the ground, and in fact Analytic Signal maps look very
similar to gridded geochemical maps. Areas of Analytic Signal highs will be located over more
highly magnetic rocks.

Application in anomaly source location
For detailed single anomaly interpretation, analytic signal is useful to verify the location of a
source magnetic body. This is especially helpful when magnetic source bodies have unknown
remanent magnetization.
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However, interpreting location from Analytic Signal does require relatively good separation of
interfering anomalies. If the anomaly in question is very strong relative to potentially interfering
anomalies, the analytic signal will be accurate. If the anomaly is relatively weaker than interfering
anomalies, or is on the flank of another anomaly, the peak of the analytic signal can be moved up to
one-half wavelength from the true body location. This is normally easy to recognize by both the shape
of the Analytic Signal, which will have an asymmetrically sharper low on the true location side, and by
the fact that there is a strong neighboring anomaly.

This is illustrated in the following example created from synthetic data. The circles indicate the location
of a wide (left) and narrow (right) vertically dipping magnetic bodies.

Depth to source interpretation

On clearly separated Analytic Signal anomalies, the width of the analytic signal at the inflation points
is a measure of the depth to the source (MacLeod, 1993). A Laplace filter can be applied to the data,
either in 1-D (-1,2,-1) or 2-D (0,-1,0,-1,4,-1,0,-1,0), to provide a visual measure of the distance
between inflection points.

The following figure illustrated the interpretation of depth from the application of a Laplace filter to a
profile over a contact. The distance between inflection points is approximately 70 metres, and the
depth to the source would be (70/1.41), or approximately 50 metres. If the source were interpreted as
a thin sheet, the depth interpretation would be 70 metres (70/1). Depending on the quality of the
anomaly and the affect of interfering anomalies, you will have some confidence that the source lies
somewhere between these limits.
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For more information on the software used in this paper, contact software@geosoft.com. Visit www.geosoft.com. 

Limitations
Because analytic signal is calculated from derivatives, it is sensitive to shortwavelength noise in the
data. This can be removed by simple low-pass filtering, or by vertical integration (MacLeod, 1992).

As mentioned previously, anomaly location can be complicated by overlapping or interfering
anomalies. This should be addressed by care in the interpretation of locations, or by calculating the
analytic signal on higher-order vertical derivatives second of the data (first vertical or second).

Locations of 3-D sources will be offset in the direction of the intensity vector in the body. This is because
the analytic signal is showing the location of maximum magnetic flux. For two-dimensional sources, the
maximum flux lies over the edges of the body, except where overlapping anomalies shift this location.

Analytic contains no information about the dip of the source, or the magnetization direction of the
source.
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