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ABSTRACT 
In this paper we introduce the Volsung Geothermal Reservoir 
Simulator software package. At its core is a very fast 
numerical reservoir simulator based on the finite volume 
method (FVM). Its computational backbone is based on a 
hybrid method, where most of the numerically intensive 
calculations are performed on a CPU and only the memory 
bandwidth-limited linear solve operations are outsourced to 
an inexpensive, consumer-grade graphical processing unit 
(GPU). This approach enables vast performance 
enhancements when compared with traditional CPU-based 
systems while avoiding the hardware and software 
complexity of distributed memory architectures found in 
other high-performance-computing solutions. 

We have validated Volsung versus test models from the 
Stanford 1980 Geothermal Model Intercomparison Study. In 
addition, we created simple test models to compare Volsung 
to results from the TOUGH2 simulator for selected problems 
of interest. Tests include a dual-porosity simulation problem 
which uses the Multiple Interacting Nested Continua (MINC) 
formulation, simulations using different equations of state 
(water, non-condensible gas and salt) and simulation runtime 
comparison. In all cases Volsung successfully reproduced the 
expected model results and achieved large speedups versus 
TOUGH2 for production size models. 

1. INTRODUCTION 
For years there have been few numerical simulators available 
on the free market for creating and running geothermal 
reservoir simulations. The TOUGH2 simulator (Pruess et al., 
1999) has been the de-facto standard tool for more than two 
decades; only recently its successor TOUGH3 (Jung et al. 
2016) has been released. Further the Waiwera (O’Sullivan et 
al., 2019) simulator is due for public release shortly. 

We present here the new flow simulation package Volsung, 
which consists of three simulators for running fully coupled 
reservoir, wellbore and surface network models. Further, it 
contains a full graphical user interface for setting up models 
in 3D, a standalone wellbore simulator, python scripts for 
advanced data analysis and has features for off-loading 
computations to remote cloud servers. 

                                                                 
1 https://www.flowstatesolutions.co.nz/downloads 

As with any other new tool we need to verify and validate it. 
Verification is hard since only very few and simple two-phase 
models exist for which the analytical solution is known. In the 
first part of this paper we hence focus on comparing 
Volsung’s output to TOUGH2 output for some select public 
models from the Stanford’s 1980 Geothermal Model 
Intercomparison Study (Molloy, 1981). Further, for testing 
different equations of state and MINC, we use some test 
models from the TOUGH2 User’s Guide (Pruess et al., 1999) 
or our own creations. 

Since geothermal reservoir simulations using TOUGH2 often 
take hours to days to complete we are of course interested in 
Volsung’s performance. The second part of this paper hence 
analyses the performance limits of the finite volume method 
(FVM) using different system architectures in order to 
investigate what speedups are technically feasible. 

2. VALIDATION OF VOLSUNG 
This section gives an overview of the validation test model 
runs comparing Volsung with TOUGH2. All models are 
available as examples in the Volsung package and where 
applicable contain the TOUGH2 files which can be used for 
testing other simulators1. 

Note when comparing results from Volsung to TOUGH2 we 
need to keep in mind that small differences are expected since 
Volsung uses the IAPWS-97IF steam tables while TOUGH2 
uses IC67. 

2.1. Stanford Problem 1 
Stanford Problem 1 involves one-dimensional, radial, steady-
state flow and unsteady heat transport in a single-phase liquid. 
The purpose is to test heat conduction and convection in a 
single-phase compressed water region. The results from the 
test are shown in Figure 1. 

2.2. Stanford Problem 2 
Stanford Problem 2 models radial flow to a line sink at the 
origin of a radial mesh and is divided into four sub problems. 
Case A remains single-phase liquid. Case B deals with two-
phase conditions where both phases are mobile. In case C the 
fluid changes from compressed liquid to two-phase with 
flash-point propagation away from the well. The authors of 
the study mention that this case is hard to model numerically; 
indeed, the results from Volsung and TOUGH2 show some 
disagreement for this case for the blocks next to the sink. 
Results from problem 2 are shown in Figure 2. Croucher et.al. 
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(2018) also investigated this problem and found that the 
simulators tested there deviated from the semi-analytical 
solution for this problem. While this does not explain the 
disagreement between Volsung and TOUGH2 here it 
demonstrates that this appears to be a hard problem and would 
merit further investigation for the different simulators. 

2.3. Stanford Problem 3 
The third problem from the Stanford code comparison study 
is a radial model with horizontal and vertical flow, including 
flow through a high permeability fracture and low 
permeability blocks. The problem definition is ambiguous 
and several participants in the code comparison study had 
different interpretations and hence different results. 

To simplify the problem, we implemented a rectilinear grid 
with a high porosity, high permeability well block, a high 
permeability fracture and low permeability blocks above the 
model’s fissure. In Figure 3 we show the pressure, gas 
saturation and flowing enthalpy transients of the well block. 

2.4. Stanford Problem 4 
Problem 4 is a 1km square reservoir with 20 single block 
layers each 100m thick. The initial reservoir temperature is 
prescribed and a flow rate of 100kg/s is extracted from the 
bottom layer for a 40 year period. Figure 4 shows the pressure 
and gas saturation profiles at the end of the production period 
as well as the transient of the production fluid enthalpy. 

2.5. Stanford Problem 5 
The fifth problem from the Stanford code comparison study 
is a 2D model covering a horizontal 300×200×100m3 grid. 
The model is initialized with a temperature gradient as 
described in the model study. One block produces 5kg/s for 

 

Figure 1: Comparison between Volsung and TOUGH2, 
Stanford Model Intercomparison Problem 1. 

 

 

Figure 2: Comparison between Volsung and TOUGH2, 
Stanford Model Intercomparison Problem 2. 

 

 

 

Figure 3: Comparison between Volsung and TOUGH2, 
Stanford Model Intercomparison Problem 3. 
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10 years. Figure 5 shows the pressure, gas saturation in the 
production block and produced enthalpy transients for the 
model. 

2.6. Stanford Problem 6 
The sixth problem from the Stanford code comparison study 
is a three-dimensional model with single phase liquid at depth 
sitting under a two-phase zone with immobile steam. At the 
top of the model is a zone of colder single-phase water. 
Production is from below the two-phase zone at a rate of 1000 
kg/s for the first 2 years, 2500 kg/s for the next 2 years, 4000 
kg/s for the following 2 years and 6000 kg/s for the final 2 
years for a proposed 8-year forecast. 

In both Volsung and TOUGH2, and in the simulators used in 
the original study, the 6000 kg/s production rate caused 
catastrophic pressure decline in the production zone 
terminating the simulations. A comparison between 
production enthalpy, pressure and gas saturation in the well 
block is shown in Figure 6. The difference between Volsung 
and TOUGH2 at the final simulation time is that TOUGH2 
fails to find a solution and halts while Volsung continues to 
generate output until near vacuum is achieved in the block. 

2.7. MINC 
To test Volsung’s MINC capabilities (Pruess et al., 1999; 
Thunderhead, 1999) we created a simple 2D test model, 
500×500m2 with a single 100m thick layer and uniform 20m 
cell spacing. The model is set to 100bar and 304ºC initial 
conditions. A cold fluid injector with constant injection rate 
and injection enthalpy of 12.6kg/s and 196kJ/kg, respectively, 
is put close to the centre of the model. A producer is located 

140m away from the injector towards the side of the model 
and set to produce 12.6kg/s, i.e. the same amount as injected. 
The model was run for 10 years. 

We tested this model with two different fracture spacings, 
300m and 50m, and using one fracture and two matrix layers 
with 2%, 4% and 94% volume fraction, respectively. The 
MINC mesh was generated internally by Volsung and 
TOUGH2 using these same basic parameters. 

Figure 7 shows the transient behaviour of the model for the 
block containing the producer. The temperature in all 3 MINC 
layers and the enthalpy of the produced fluid is shown. 

2.8. EOS with CO2 
Volsung has capabilities to use an equation of state (EOS) 
module which accounts for a non-condensible gas (NCG); 
currently CO2 and air have been implemented. The same 
basic equations as in TOUGH2 are used; only some minor 
improvements to aid numerical stability have been made. 

To test the thermodynamic behaviour versus a TOUGH2 
model we wanted to focus on the basic thermodynamics 
rather than on transport phenomena. Hence we created a very 
simple model consisting of one block with a sink attached. 
The model is started in compressed liquid state but then 
traverses through two phase and finally single-phase gas state; 
it finally runs out of fluid and the simulation collapses at this 
stage. Figure 8 shows the comparison between Volsung and 
TOUGH2; both simulators show the same transient behaviour 
and agree well on the phase partitioning of CO2. 

2.9. EOS with Salt 
Volsung features an EOS containing NaCl which is based on 
the method published by Battistelli et al. (1997); however, at 

 

 

Figure 4: Comparison between Volsung and TOUGH2, 
Stanford Model Intercomparison Problem 4. 

 

 

Figure 5: Comparison between Volsung and TOUGH2, 
Stanford Model Intercomparison Problem 5. 
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this stage it does not contain NCG yet. The general idea of 
having an EOS with salt but no NCG is to provide a method 
to support modelling of a salty tracer for models in which 
mixing or boiling occurs. It is planned to add NCG support in 
the near future. 

Not having a NCG makes direct comparison to TOUGH2’s 
EWASG hard since it is difficult to set up the model in both 
Volsung and TOUGH2 to match the same state. We created a 
model very similar to the RHBC model described in the 
TOUGH2 manual (Pruess et al., 1999), featuring vapour 
pressure lowering due to salinity, appearance of the solid 
halite phase and decreasing permeability due to reduction of 
the free pore space via a permeability modification function. 
Results for this model are shown in Figure 9; the agreement 
in all parameters except for a small temperature offset is very 
good but one needs to keep in mind that the TOUGH2 model 
still contains traces of CO2. We will revisit this model once 
Volsung also supports NCG. 

3. PERFORMANCE ANALYSIS 
In the geothermal modelling community, the most accepted 
method for solving the transport equations for mass and heat 
is the finite volume method (FVM). All simulators mentioned 
here—TOUGH2, TOUGH3, Waiwera and Volsung—are 
based on this method. In brief, the method can be summarized 
as follows: 

 Given an initial state at time t we want to calculate the 
state at time t+dt. 

 We calculate a residual vector R(t+dt, X) by 
considering mass and heat conservation equations and 
using a trial set of primary variables X. 

 We then calculate the Jacobian matrix J by estimating 
the derivatives of R with respect to the primary 
variables. This is usually done using finite differencing. 

 The solution for the state at t+dt is improved using 
Newton’s method; for this we need to solve the linear 
system J * (-dX) = R. 

 These Newton iterations are repeated until a solution 
fits the convergence criteria. The accepted solution is 
the state at t+dt. 

The computational time intensive tasks in this method are: 

1. Repeatedly calculating the residual vector R using 
different primary variables. Since the Jacobian matrix 
is generally determined using finite differencing, we 
need to calculate the residual NPV+1 times per Newton 
iteration. Here NPV is the number of primary variables 
per element and can be expressed as NPV=NC+1 with 

 

Figure 6: Comparison between Volsung and TOUGH2, 
Stanford Model Intercomparison Problem 6. 

 

 

Figure 7: Comparison between Volsung and TOUGH2, 
MINC Problem with 50m and 300m fracture 
spacing (FS). #0 indicates fracture, #1 and #2 
indicate matrix layers. 
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NC being the number of components (e.g. H2O, CO2, 
NaCl) in the system. 

2. Solving the linear system J * (-dX) = R. This is 
generally done by employing an iterative solver like the 
BiCGStab (van der Vorst, 1992) or GMRES (Saad and 
Schultz, 1986) method. 

It is generally advantageous to use as large time steps as 
possible for the simulation since this reduces both the number 
of times the residual has to be computed as well as the number 
of times the linear system needs to be solved. However large 
time steps come at a cost: Since the off-diagonal elements of 
the Jacobian matrix scale with the time step the matrix 
becomes non-diagonally dominant and will require many 
more iterations than when using small time steps. 
Additionally, the numerical solvers can break down when 
they run out of numerical precision, which happens quite 
frequently with time steps larger than ~1012s. An ideal time 
stepping method would aim to determine the approximate 
time for solving the linear system a priori and choose the time 
step accordingly; however, the current time stepping methods 
used in the simulators are quite crude. 

For the following discussion we will set the time step length 
issue aside for a moment and focus on how to efficiently solve 
the two main computational tasks. 

3.1. Computing the Residual 
The residual vector needs to be computed repeatedly to 
determine both the right-hand side vector and the Jacobian 
matrix. Using a set of primary variables (e.g. pressure and 
temperature) we need to calculate the  secondary variables 
(e.g. density, enthalpy, and viscosity of each phase) of each 

model element and from there its accumulation terms. The 
residual is then calculated using the accumulation terms from 
the previous time step and by taking sources/sinks and fluxes 
to/from neighbouring elements into account. With the 
exception of flux terms no calculations require knowledge of 
another element’s thermodynamic state, and even the 
calculation of the flux terms can be arranged in such a way 
that all numerical calculation can be performed in a 
completely data parallel manner. 

Advances in computing technology over the last couple of 
years have no longer focused on increasing the CPU clock 
rate by significant amounts. Computational speedup today is 
usually achieved by parallel computing, where a 
computational task is performed by multiple arithmetic units 
or cores. These can be located either inside a single CPU, or 
we can also employ multiple CPUs in either shared or 
distributed memory configurations. 

Data parallelism is an easy problem for which we can employ 
multiple-core systems. For large models, we expect linear 
scaling in terms of the number of cores Ncores, i.e. the 
computational time for calculating the residual is 
approximately 

tresidual = tresidual,serial / Ncores 

where tresidual,serial is the time required when performing the 
calculation using a single core. 

The number of cores available on CPUs has grown 
significantly over the last years. Quad cores are nearly a 
standard these days; CPUs with 8 cores are available for high-
end consumer machines. Top end CPUs feature more than 24 
cores, and some computational accelerators like the Intel 

 

Figure 8: Comparison between Volsung and TOUGH2, 
single block with sink containing CO2. 

 

 

Figure 9: Comparison between Volsung and TOUGH2, 
Model containing NaCl. 
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Xeon Phi can have more than 72 cores, although at a reduced 
clock rate versus a CPU. Hence desktop PCs can achieve 
great speedup related to the calculation of the residual, 
provided one invests in suitable CPU hardware.  

All of the simulators under discussion here with the exception 
of TOUGH2 use parallel methods, either through OpenMP or 
MPI libraries. Excepting TOUGH2 (for which also parallel 
versions exist) we hence do not expect large differences 
between the simulators’ performance relating to calculating 
the residual, though of course it is always possible that a 
simulator may employ non-optimal algorithms. 

3.2. Solving the Linear System 
3.2.1. General Approach 
The linear system is in general solved using a sparse iterative 
solver. Internally these solvers use basic linear algebra 
operations, i.e. once per iteration the solver will solve several 
of the following operations: SpMV (sparse matrix-vector 
multiplication), AXPY (vector scaling plus addition), DOT 
(vector dot products), and SpTSv (sparse triangular solves). 

All these linear operations can be parallelized; however, the 
SpTSv can prove challenging (see discussion further below). 
However, as it turns out we need to keep the total memory 
size for the linear system in mind; this is the total size of all 
matrices and vectors which need to be stored in RAM and are 
accessed by the solver during each iteration. The size NB in 
bytes for storing the Jacobian matrix can be estimated as 

NB ~ (6+1) * NE * (NC + 1)2 * (B+4) 

The size depends on the number of connections per element 
(typically 6 for a regular tartan grid), the number of elements 
NE, the number of components NC and the number of bytes 
per coefficient B (8 for double precision). In addition to 
storing the Jacobian matrix we also need to store another 
matrix of the same size when using ILU0 as a preconditioner. 
For pure water (NC=1) we can hence estimate the minimum 
size of RAM required as 

NB ~ 2 * 336 * NE 

In addition to this a number of vectors need to be stored as 
well; the exact number depends on the type of solver used and 
can be substantial (e.g. for GMRES). However, the above 
estimate suffices for our discussion here. 

When starting the sparse iterative solver, the system will load 
the required data from RAM into the CPU’s cache; this is a 
relatively slow process. The cores then access the CPU cache 
to load the data into the arithmetic units and perform the 
necessary calculations; this process is typically two orders of 
magnitude faster than loading data from RAM into the cache. 

For the second and subsequent solver iterations we can 
distinguish two cases: If the size of the linear system is small 
compared to the CPU cache size then the CPU will still have 
a copy of all the necessary data in the cache. Since no data 
needs to be loaded from RAM into the cache this iteration will 
be much faster than the first iteration. Since the cores can 
access and process the data from the cache, parallelization 
works and the calculation is sped up. 

On the other hand, if the linear system size exceeds the CPU 
cache size then the system needs to reload the data from RAM 
each iteration of the iterative solver. It now does not matter 
that the computation can be solved in parallel since even the 
speed of performing the computations on a single core far 
outstrips the speed of loading data from RAM. The process of 
solving the linear system now becomes bandwidth limited. 

To find out at what problem size this bandwidth limitation 
becomes an issue, we can compare the typical cache sizes of 
modern CPUs with the size of the linear system. For example 
high-end CPUs like from Intel Xeon family have ~25MB 
cache; hence the maximum model size they can accommodate 
is around  

NE = 25 * 10242 / (2 * 336) ~ 39,010 

Other more commonly used CPUs like Intel i7s have only 
about 6 to 12MB of cache and hence can accommodate much 
smaller systems. In addition, the operating system and other 
processes will occupy part of the cache and further reduce this 
number. Also, if using more than one component (e.g. NCG 
or salt), this number decreases dramatically due to the 
quadratic (NC + 1) term. 

Two strategies can be employed to overcome or improve the 
bandwidth limitation. The first is to use distributed memory 
systems, where the linear system is distributed over the RAM 
of multiple nodes, i.e. each computer will work on certain 
rows of the system. Whenever required the nodes exchange 
intermediary results, e.g. via a network connection. This 
method allows to add up the bandwidths of the individual 
nodes; also, if the linear system is split into sufficiently small 
parts, then these will again fit into the caches of the CPUs of 
the nodes. The simulators based on the PETSc library, i.e. 
TOUGH3 and Waiwera, make use of this method. For 
example, O’Sullivan et al. (2019) made use of 320 CPUs for 
their 2,300,000-element sized Lihir model. Using the above 
equations for estimating the size requirement we see that they 
required about 4.6MB per CPU, i.e. they were able to push 
the problem below the bandwidth limitation threshold. 

The major disadvantage of the distributed memory method is 
the high number of nodes required to run large models; further, 
one requires access to an adequate computer cluster or the 
high capital cost of purchasing such a system. A second 
disadvantage is the complexity of SpTSv operations when 
using distributed memory; we will discuss this further down. 

The second strategy is to push the bandwidth limited 
operations of the linear solve to a computational device which 
has higher bandwidth than a CPU. Graphical Processing Units 
(GPUs) have become popular to solve parallelized 
computational problems over the last decade. A great 
advantage of these GPUs is that their bandwidth far exceeds 
the bandwidth of a CPU. For example high end consumer 
grade GPUs like NVIDIA’s GeForce TITAN RTX obtain 
bandwidths of up to 672GB/s at a cost of US$2,500; other 
high end GPUs reach up to 1000GB/s. For comparison, Intel 
Xeon CPUs typically reach only ~30GB/s. Hence depending 
on expenditure GPUs can achieve speedups of up to factors 
of 30 versus CPUs for the linear solve operation while 
employing normal desktop or laptop computers. NVIDIA 
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supports linear solver development by providing dense and 
sparse library packages for basic linear algebra operations2. 

The Volsung package provides two solver architectures: One 
CPU based solver for small models or for PCs which are not 
fitted with an NVIDIA GPU, and a fully parallelized GPU 
solver architecture featuring BiCGStab and GMRES solver 
types. 

3.2.2. Preconditioner Issues 
Sparse iterative solvers typically employ preconditioners to 
improve their performance, i.e. to reduce the number of 
iterations required. The most often employed preconditioner 
is incomplete lower/upper with zero backfill (ILU0). This 
preconditioner has the same matrix stencil as the Jacobian 
matrix and hence has the same storage requirement. It is based 
on finding an upper and lower triangular matrix pair such that 

(L*U) = J 

However, the above L/U matrices would be dense and require 
a huge amount of space; hence ILU0 only calculates the 
coefficients on the Jacobian matrix stencil. This reduces the 
above equation to an approximation, i.e. (L*U) ~ J. An 
approximate solution is all that is required within the iterative 
solver; however, the better this approximation the smaller the 
number of iterations required. Hence the less coefficients are 
used for L/U the more iterations may be required by the solver. 

ILU is a highly serial problem since finding the solution for 
one row in the system requires knowledge of previous parts 
of the solution. Parallelization can be achieved in two ways. 
The first method is to use additional block stencils over the 
matrix diagonal, as it is done in Jacobi-Block or ASM 
preconditioners. Each block can then be solved in parallel on 
different nodes. However, using this method means even less 
coefficients than for ILU0 are considered and the 
preconditioner suffers from degradation effects with 
increasing number of stencil blocks. 

The second method is making use of the fact that in ILU0 
some rows can be solved independently of each other. Rows 
are then combined into solve levels; within each level rows 
can be solved independently in parallel. The preconditioner is 
analyzed once at the beginning of a simulation to determine 
the solve levels; since the levels do not change over the 
simulation, they can be re-used many times. The advantage of 
this strategy is that the full ILU0 can be used, i.e. the quality 
of the preconditioner does not degrade. However, since the 
number of solve levels is quite high this method does not 
work very well on distributed memory systems since it 
requires a high number of communications between the nodes. 
For GPUs on the other hand the communication part is not 
required, hence making this architecture suitable for parallel 
ILU0. 

3.2.3. Other Considerations 
So far, we have only considered situations where the linear 
system to be solved did not change, i.e. we assumed different 

                                                                 
2 https://docs.nvidia.com/cuda/cuda-
samples/index.html#cusolversp-linear-solver- 

simulators would go through exactly the same calculation 
steps. 

However, there are other factors at play. For example we need 
to carefully consider numerical truncation errors when 
calculating the Jacobian matrix. This becomes important at 
large time-steps since parts of the equations for calculating 
the residual vector scale with the time step while other parts 
don’t. Exactly how a simulator will perform this calculation 
will determine the numerical truncation; if not done properly 
it may become harder to find numerical solutions to the linear 
system, i.e. more iterations are required. 

Similarly, it is quite common to see the number of iterations 
of the solver increase with large time steps since the matrix 
becomes non-diagonal dominant. At large time-steps solver 
breakdown becomes an issue when the internal precision of 
the solver is exceeded; this usually means that the current time 
step is to be aborted and the step is repeated with a reduced 
time step; this comes at a high computational time penalty. 

Lastly, it is also common to see super-linear increases in the 
number of iterations when approaching the solver breakdown 
limit. In this case doubling the time step may result in more 
than twice the time required for solving the linear system. It 
would be of high interest to find better criteria for time step 
adaption in order to improve simulator performance. 

3.3. Overall Parallel Performance 
When employing parallelization, the overall speedup 
achieved is limited by Amdahl’s law (Amdahl 1967). For our 
example here where we have two processes—one for 
calculating the thermodynamics (TD) and one for linear 
solves (LS)—we can calculate the maximum possible 
speedup as 

Stot = 1.0 / (pTD/STD + pLS/SLS) 

Here p stands for the fraction of the computational time the 
process needs when run in serial, and S is the speedup for the 
process by employing parallelization. We can now calculate 
expected speedups; we focus here on typical values 
encountered and consider only shared memory systems. 

During a steady state simulation, the time step is usually not 
constrained; due to the non-diagonal dominance of the matrix 
this means that typically more than 90% of the computational 
time is spent in the linear solve. We can now consider the 
speedup employing parallelization using a modern desktop 
CPU, for example an octa-core, versus running the simulation 
on a serial simulator like TOUGH2. If we assume that the 
model is large and hence bandwidth limited (i.e. no linear 
solve speedup) we have  

Stot = 1.0 / (0.1 / 8 + 0.9 / 1.0) = 1.10 

On the other hand, if we now also speed up the linear solve 
process by using a GPU with 15 times the bandwidth of the 
GPU we obtain 
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Stot = 1.0 / (0.1 / 8 + 0.9 / 15.0) = 13.8 

If the time step is constrained during calibration or scenario 
runs then the matrix is usually diagonal-dominant and the 
linear solve requires less iterations. Typically, the 
computational time is now split evenly between calculating 
the thermodynamics and performing the linear solve. When 
only employing parallelization for the thermodynamic 
calculations we will have 

Stot = 1.0 / (0.5 / 8 + 0.5 / 1.0) = 1.8 

or, when using our GPU example, 

Stot = 1.0 / (0.5 / 8 + 0.5 / 15.0) = 10.4 

The above calculations suggest that significant speedup on 
large models can only be had by breaking the bandwidth 
limitation of the CPU, whether by employing distributed 
memory computer clusters or by using GPUs. They also 
illustrate that, when using GPUs, we can expect the largest 
speedups while running steady-state simulations. During 
calibration/scenario runs speedup will be more in line with the 
number of cores employed for solving the thermodynamic 
states, however, the GPU still provides speedup beyond this 
limit. 

                                                                 
3 TOUGH2 did not record the linear solve time; we used the 
total run time as an estimate since the other simulators 
indicated that it was by far the dominant computational task 

4. PERFORMANCE TESTS 
4.1. Steady-State Performance 
In this test we wanted to investigate the bandwidth 
dependency of the linear solve operation. We chose a 100,000 
block model (50×50×40 blocks) with block dimensions 
20×20×10 metres, set to a cold initial state (300bar, 20ºC); 
this model more than exceeds the CPU cache size of the CPUs 
we tested it on. One bottom corner block was set as a fixed 
state with high temperature and pressure (500bar, 250ºC); 
across the diagonal we produced 1kg/s of fluid from a block 
in the top layer. The model used single porosity, 50mD 
permeability, specific heat of 1000J/(kg*K), rock density 
2650kg/m3, heat conductivity of 2W/(K*m) and 1% porosity. 
The simulation was run for 1 million years with no constraints 
on the time step. This model was chosen for its simplicity, i.e. 
it doesn’t have phase changes. 

We ran this model on different simulators—TOUGH2, 
TOUGH3 and Volsung; using Volsung we also ran it using 
different CPUs and GPUs for solving the linear system and 
used different operating systems (Linux and Windows 10). 
We then recorded total run time, the time spent on solving the 
linear systems 3 and the number of time steps it took the 
simulator to solve the simulation. 

Table 1 summarizes the run results. A direct comparison of 
the times is difficult since the different simulators took a 
different number of time steps to move through the simulation 
time. TOUGH2 took nearly twice the number of steps (162) 

Figure 10: Performance benchmarking versus TOUGH2 and TOUGH3 using different CPU and GPU architectures for 
Volsung. The dotted line demonstrates the 1/bandwidth dependency of the linear solve operation for large models. 
The slower solution times for Volsung using Windows is understood to be graphics driver issue. 
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than Volsung (934); this enabled it to stay competitive versus 
Volsung’s simple CPU solver (which is parallelized but not 
optimized yet) since the smaller time steps require less 
iterations in the linear solver (see discussion in 3.2.3). 

TOUGH3 took 845 steps; since it is based on TOUGH2 we 
don’t quite understand why it requires so many more time 
steps than TOUGH2. We also ran it using 1, 2, 4 and 8 threads 
on a quad core CPU and it showed significant runtime 
degradation with increasing number of threads. We believe 
this is due to the aforementioned preconditioner degradation, 
i.e. more and more matrix coefficients are dropped when 
increasing the number of stencil blocks/threads. 

Since Volsung took the same number of steps we can use its 
linear solve time to illustrate the bandwidth dependency of 
this operation. Figure 10 shows the linear solve time as a 
function of the bandwidth of the architecture used. The dotted 
line in this figure highlights the 1/bandwidth dependency of 
the operation over a wide range of bandwidths. Using an 
RTX2070 GPU (448GB/s) Volsung solved this model 
approximately 18 times faster than TOUGH2, about 29 times 
faster than TOUGH3 (serial) and 133 times faster than 
TOUGH3 (8 threads) through the combination of longer time 
steps and faster solver iterations. 

We also noted that the Volsung GPU solver requires 
significantly longer solve times under Windows 10 than 
under Linux operating systems; it appears that this is due to a 

                                                                 
4 One run in Volsung took 94 instead of 93 time steps. This 
is a behaviour commonly seen when applying 

limitation in the Windows driver for NVIDIA graphics cards 
when using the GPU for both displaying the screen and 
performing GPU calculations at the same time. Further tests 
will show if this limitation can be overcome when adding a 
second graphics card to a PC for displaying the screen. 

4.2. Calibration/Scenario Performance 
We performed another set of tests with variations of the #4 
test model from the Stanford intercomparison study. We 
discretized this model using 18,000, 50,000 and 98,000 
blocks and limited the time step to simulate behaviour similar 
as encountered in a calibration or scenario run of a simulation. 
We tested these models using TOUGH2 and Volsung and 
recorded the total run times and number of steps taken for the 
run. TOUGH2 and Volsung solved this model using a 
comparable number of time steps. Volsung achieved 
speedups of 3, 5 and 7 for this model, with speedup increasing 
with model size and hence the size of the linear system. These 
speedups are in line with expectations with the number of 
cores (4) and GPU (256GB/s) used as discussed in section 3.3. 

5. CONCLUSIONS 
We demonstrated the suitability of the new Volsung software 
package by validating it against the industry standard 
TOUGH2 simulator. Validation results confirm very good 
agreement between the simulators over all problems tested. 

Limits to performance enhancement using parallel processes 
were discussed. Volsung uses GPUs to address the bandwidth 
limitation of the linear solve operation and parallelizes 
calculation of thermodynamic states using multi-core CPUs. 
The speedups observed qualitatively and quantitatively 
demonstrate the performance improvements possible when 
solving the finite volume method on shared memory systems. 
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