

Proceedings 41st New Zealand Geothermal Workshop

25-27 November 2019
Auckland, New Zealand

INTRODUCING THE VOLSUNG GEOTHERMAL SIMULATOR:
BENCHMARKING AND PERFORMANCE

Peter Franz1, Jonathon Clearwater1 and John Burnell2
1Flow State Solutions Ltd, 67 Hamon Place, Rotorua, New Zealand
2GNS Science, Private Bag 30-368, Lower Hutt 5040, New Zealand

Peter.Franz@FlowStateSolutions.co.nz

Keywords: Volsung, Simulator, TOUGH2, Benchmarking,
Performance, Parallel Computing

ABSTRACT
In this paper we introduce the Volsung Geothermal Reservoir
Simulator software package. At its core is a very fast
numerical reservoir simulator based on the finite volume
method (FVM). Its computational backbone is based on a
hybrid method, where most of the numerically intensive
calculations are performed on a CPU and only the memory
bandwidth-limited linear solve operations are outsourced to
an inexpensive, consumer-grade graphical processing unit
(GPU). This approach enables vast performance
enhancements when compared with traditional CPU-based
systems while avoiding the hardware and software
complexity of distributed memory architectures found in
other high-performance-computing solutions.

We have validated Volsung versus test models from the
Stanford 1980 Geothermal Model Intercomparison Study. In
addition, we created simple test models to compare Volsung
to results from the TOUGH2 simulator for selected problems
of interest. Tests include a dual-porosity simulation problem
which uses the Multiple Interacting Nested Continua (MINC)
formulation, simulations using different equations of state
(water, non-condensible gas and salt) and simulation runtime
comparison. In all cases Volsung successfully reproduced the
expected model results and achieved large speedups versus
TOUGH2 for production size models.

1. INTRODUCTION
For years there have been few numerical simulators available
on the free market for creating and running geothermal
reservoir simulations. The TOUGH2 simulator (Pruess et al.,
1999) has been the de-facto standard tool for more than two
decades; only recently its successor TOUGH3 (Jung et al.
2016) has been released. Further the Waiwera (O’Sullivan et
al., 2019) simulator is due for public release shortly.

We present here the new flow simulation package Volsung,
which consists of three simulators for running fully coupled
reservoir, wellbore and surface network models. Further, it
contains a full graphical user interface for setting up models
in 3D, a standalone wellbore simulator, python scripts for
advanced data analysis and has features for off-loading
computations to remote cloud servers.

1 https://www.flowstatesolutions.co.nz/downloads

As with any other new tool we need to verify and validate it.
Verification is hard since only very few and simple two-phase
models exist for which the analytical solution is known. In the
first part of this paper we hence focus on comparing
Volsung’s output to TOUGH2 output for some select public
models from the Stanford’s 1980 Geothermal Model
Intercomparison Study (Molloy, 1981). Further, for testing
different equations of state and MINC, we use some test
models from the TOUGH2 User’s Guide (Pruess et al., 1999)
or our own creations.

Since geothermal reservoir simulations using TOUGH2 often
take hours to days to complete we are of course interested in
Volsung’s performance. The second part of this paper hence
analyses the performance limits of the finite volume method
(FVM) using different system architectures in order to
investigate what speedups are technically feasible.

2. VALIDATION OF VOLSUNG
This section gives an overview of the validation test model
runs comparing Volsung with TOUGH2. All models are
available as examples in the Volsung package and where
applicable contain the TOUGH2 files which can be used for
testing other simulators1.

Note when comparing results from Volsung to TOUGH2 we
need to keep in mind that small differences are expected since
Volsung uses the IAPWS-97IF steam tables while TOUGH2
uses IC67.

2.1. Stanford Problem 1
Stanford Problem 1 involves one-dimensional, radial, steady-
state flow and unsteady heat transport in a single-phase liquid.
The purpose is to test heat conduction and convection in a
single-phase compressed water region. The results from the
test are shown in Figure 1.

2.2. Stanford Problem 2
Stanford Problem 2 models radial flow to a line sink at the
origin of a radial mesh and is divided into four sub problems.
Case A remains single-phase liquid. Case B deals with two-
phase conditions where both phases are mobile. In case C the
fluid changes from compressed liquid to two-phase with
flash-point propagation away from the well. The authors of
the study mention that this case is hard to model numerically;
indeed, the results from Volsung and TOUGH2 show some
disagreement for this case for the blocks next to the sink.
Results from problem 2 are shown in Figure 2. Croucher et.al.

mailto:author_email@email.com

New Zealand Geothermal Workshop 2019 Proceedings

25 – 27 November 2009
Auckland, New Zealand

(2018) also investigated this problem and found that the
simulators tested there deviated from the semi-analytical
solution for this problem. While this does not explain the
disagreement between Volsung and TOUGH2 here it
demonstrates that this appears to be a hard problem and would
merit further investigation for the different simulators.

2.3. Stanford Problem 3
The third problem from the Stanford code comparison study
is a radial model with horizontal and vertical flow, including
flow through a high permeability fracture and low
permeability blocks. The problem definition is ambiguous
and several participants in the code comparison study had
different interpretations and hence different results.

To simplify the problem, we implemented a rectilinear grid
with a high porosity, high permeability well block, a high
permeability fracture and low permeability blocks above the
model’s fissure. In Figure 3 we show the pressure, gas
saturation and flowing enthalpy transients of the well block.

2.4. Stanford Problem 4
Problem 4 is a 1km square reservoir with 20 single block
layers each 100m thick. The initial reservoir temperature is
prescribed and a flow rate of 100kg/s is extracted from the
bottom layer for a 40 year period. Figure 4 shows the pressure
and gas saturation profiles at the end of the production period
as well as the transient of the production fluid enthalpy.

2.5. Stanford Problem 5
The fifth problem from the Stanford code comparison study
is a 2D model covering a horizontal 300×200×100m3 grid.
The model is initialized with a temperature gradient as
described in the model study. One block produces 5kg/s for

Figure 1: Comparison between Volsung and TOUGH2,
Stanford Model Intercomparison Problem 1.

Figure 2: Comparison between Volsung and TOUGH2,
Stanford Model Intercomparison Problem 2.

Figure 3: Comparison between Volsung and TOUGH2,
Stanford Model Intercomparison Problem 3.

New Zealand Geothermal Workshop 2019 Proceedings

25 – 27 November 2009
Auckland, New Zealand

10 years. Figure 5 shows the pressure, gas saturation in the
production block and produced enthalpy transients for the
model.

2.6. Stanford Problem 6
The sixth problem from the Stanford code comparison study
is a three-dimensional model with single phase liquid at depth
sitting under a two-phase zone with immobile steam. At the
top of the model is a zone of colder single-phase water.
Production is from below the two-phase zone at a rate of 1000
kg/s for the first 2 years, 2500 kg/s for the next 2 years, 4000
kg/s for the following 2 years and 6000 kg/s for the final 2
years for a proposed 8-year forecast.

In both Volsung and TOUGH2, and in the simulators used in
the original study, the 6000 kg/s production rate caused
catastrophic pressure decline in the production zone
terminating the simulations. A comparison between
production enthalpy, pressure and gas saturation in the well
block is shown in Figure 6. The difference between Volsung
and TOUGH2 at the final simulation time is that TOUGH2
fails to find a solution and halts while Volsung continues to
generate output until near vacuum is achieved in the block.

2.7. MINC
To test Volsung’s MINC capabilities (Pruess et al., 1999;
Thunderhead, 1999) we created a simple 2D test model,
500×500m2 with a single 100m thick layer and uniform 20m
cell spacing. The model is set to 100bar and 304ºC initial
conditions. A cold fluid injector with constant injection rate
and injection enthalpy of 12.6kg/s and 196kJ/kg, respectively,
is put close to the centre of the model. A producer is located

140m away from the injector towards the side of the model
and set to produce 12.6kg/s, i.e. the same amount as injected.
The model was run for 10 years.

We tested this model with two different fracture spacings,
300m and 50m, and using one fracture and two matrix layers
with 2%, 4% and 94% volume fraction, respectively. The
MINC mesh was generated internally by Volsung and
TOUGH2 using these same basic parameters.

Figure 7 shows the transient behaviour of the model for the
block containing the producer. The temperature in all 3 MINC
layers and the enthalpy of the produced fluid is shown.

2.8. EOS with CO2
Volsung has capabilities to use an equation of state (EOS)
module which accounts for a non-condensible gas (NCG);
currently CO2 and air have been implemented. The same
basic equations as in TOUGH2 are used; only some minor
improvements to aid numerical stability have been made.

To test the thermodynamic behaviour versus a TOUGH2
model we wanted to focus on the basic thermodynamics
rather than on transport phenomena. Hence we created a very
simple model consisting of one block with a sink attached.
The model is started in compressed liquid state but then
traverses through two phase and finally single-phase gas state;
it finally runs out of fluid and the simulation collapses at this
stage. Figure 8 shows the comparison between Volsung and
TOUGH2; both simulators show the same transient behaviour
and agree well on the phase partitioning of CO2.

2.9. EOS with Salt
Volsung features an EOS containing NaCl which is based on
the method published by Battistelli et al. (1997); however, at

Figure 4: Comparison between Volsung and TOUGH2,
Stanford Model Intercomparison Problem 4.

Figure 5: Comparison between Volsung and TOUGH2,
Stanford Model Intercomparison Problem 5.

New Zealand Geothermal Workshop 2019 Proceedings

25 – 27 November 2009
Auckland, New Zealand

this stage it does not contain NCG yet. The general idea of
having an EOS with salt but no NCG is to provide a method
to support modelling of a salty tracer for models in which
mixing or boiling occurs. It is planned to add NCG support in
the near future.

Not having a NCG makes direct comparison to TOUGH2’s
EWASG hard since it is difficult to set up the model in both
Volsung and TOUGH2 to match the same state. We created a
model very similar to the RHBC model described in the
TOUGH2 manual (Pruess et al., 1999), featuring vapour
pressure lowering due to salinity, appearance of the solid
halite phase and decreasing permeability due to reduction of
the free pore space via a permeability modification function.
Results for this model are shown in Figure 9; the agreement
in all parameters except for a small temperature offset is very
good but one needs to keep in mind that the TOUGH2 model
still contains traces of CO2. We will revisit this model once
Volsung also supports NCG.

3. PERFORMANCE ANALYSIS
In the geothermal modelling community, the most accepted
method for solving the transport equations for mass and heat
is the finite volume method (FVM). All simulators mentioned
here—TOUGH2, TOUGH3, Waiwera and Volsung—are
based on this method. In brief, the method can be summarized
as follows:

 Given an initial state at time t we want to calculate the
state at time t+dt.

 We calculate a residual vector R(t+dt, X) by
considering mass and heat conservation equations and
using a trial set of primary variables X.

 We then calculate the Jacobian matrix J by estimating
the derivatives of R with respect to the primary
variables. This is usually done using finite differencing.

 The solution for the state at t+dt is improved using
Newton’s method; for this we need to solve the linear
system J * (-dX) = R.

 These Newton iterations are repeated until a solution
fits the convergence criteria. The accepted solution is
the state at t+dt.

The computational time intensive tasks in this method are:

1. Repeatedly calculating the residual vector R using
different primary variables. Since the Jacobian matrix
is generally determined using finite differencing, we
need to calculate the residual NPV+1 times per Newton
iteration. Here NPV is the number of primary variables
per element and can be expressed as NPV=NC+1 with

Figure 6: Comparison between Volsung and TOUGH2,
Stanford Model Intercomparison Problem 6.

Figure 7: Comparison between Volsung and TOUGH2,
MINC Problem with 50m and 300m fracture
spacing (FS). #0 indicates fracture, #1 and #2
indicate matrix layers.

New Zealand Geothermal Workshop 2019 Proceedings

25 – 27 November 2009
Auckland, New Zealand

NC being the number of components (e.g. H2O, CO2,
NaCl) in the system.

2. Solving the linear system J * (-dX) = R. This is
generally done by employing an iterative solver like the
BiCGStab (van der Vorst, 1992) or GMRES (Saad and
Schultz, 1986) method.

It is generally advantageous to use as large time steps as
possible for the simulation since this reduces both the number
of times the residual has to be computed as well as the number
of times the linear system needs to be solved. However large
time steps come at a cost: Since the off-diagonal elements of
the Jacobian matrix scale with the time step the matrix
becomes non-diagonally dominant and will require many
more iterations than when using small time steps.
Additionally, the numerical solvers can break down when
they run out of numerical precision, which happens quite
frequently with time steps larger than ~1012s. An ideal time
stepping method would aim to determine the approximate
time for solving the linear system a priori and choose the time
step accordingly; however, the current time stepping methods
used in the simulators are quite crude.

For the following discussion we will set the time step length
issue aside for a moment and focus on how to efficiently solve
the two main computational tasks.

3.1. Computing the Residual
The residual vector needs to be computed repeatedly to
determine both the right-hand side vector and the Jacobian
matrix. Using a set of primary variables (e.g. pressure and
temperature) we need to calculate the secondary variables
(e.g. density, enthalpy, and viscosity of each phase) of each

model element and from there its accumulation terms. The
residual is then calculated using the accumulation terms from
the previous time step and by taking sources/sinks and fluxes
to/from neighbouring elements into account. With the
exception of flux terms no calculations require knowledge of
another element’s thermodynamic state, and even the
calculation of the flux terms can be arranged in such a way
that all numerical calculation can be performed in a
completely data parallel manner.

Advances in computing technology over the last couple of
years have no longer focused on increasing the CPU clock
rate by significant amounts. Computational speedup today is
usually achieved by parallel computing, where a
computational task is performed by multiple arithmetic units
or cores. These can be located either inside a single CPU, or
we can also employ multiple CPUs in either shared or
distributed memory configurations.

Data parallelism is an easy problem for which we can employ
multiple-core systems. For large models, we expect linear
scaling in terms of the number of cores Ncores, i.e. the
computational time for calculating the residual is
approximately

tresidual = tresidual,serial / Ncores

where tresidual,serial is the time required when performing the
calculation using a single core.

The number of cores available on CPUs has grown
significantly over the last years. Quad cores are nearly a
standard these days; CPUs with 8 cores are available for high-
end consumer machines. Top end CPUs feature more than 24
cores, and some computational accelerators like the Intel

Figure 8: Comparison between Volsung and TOUGH2,
single block with sink containing CO2.

Figure 9: Comparison between Volsung and TOUGH2,
Model containing NaCl.

New Zealand Geothermal Workshop 2019 Proceedings

25 – 27 November 2009
Auckland, New Zealand

Xeon Phi can have more than 72 cores, although at a reduced
clock rate versus a CPU. Hence desktop PCs can achieve
great speedup related to the calculation of the residual,
provided one invests in suitable CPU hardware.

All of the simulators under discussion here with the exception
of TOUGH2 use parallel methods, either through OpenMP or
MPI libraries. Excepting TOUGH2 (for which also parallel
versions exist) we hence do not expect large differences
between the simulators’ performance relating to calculating
the residual, though of course it is always possible that a
simulator may employ non-optimal algorithms.

3.2. Solving the Linear System
3.2.1. General Approach
The linear system is in general solved using a sparse iterative
solver. Internally these solvers use basic linear algebra
operations, i.e. once per iteration the solver will solve several
of the following operations: SpMV (sparse matrix-vector
multiplication), AXPY (vector scaling plus addition), DOT
(vector dot products), and SpTSv (sparse triangular solves).

All these linear operations can be parallelized; however, the
SpTSv can prove challenging (see discussion further below).
However, as it turns out we need to keep the total memory
size for the linear system in mind; this is the total size of all
matrices and vectors which need to be stored in RAM and are
accessed by the solver during each iteration. The size NB in
bytes for storing the Jacobian matrix can be estimated as

NB ~ (6+1) * NE * (NC + 1)2 * (B+4)

The size depends on the number of connections per element
(typically 6 for a regular tartan grid), the number of elements
NE, the number of components NC and the number of bytes
per coefficient B (8 for double precision). In addition to
storing the Jacobian matrix we also need to store another
matrix of the same size when using ILU0 as a preconditioner.
For pure water (NC=1) we can hence estimate the minimum
size of RAM required as

NB ~ 2 * 336 * NE

In addition to this a number of vectors need to be stored as
well; the exact number depends on the type of solver used and
can be substantial (e.g. for GMRES). However, the above
estimate suffices for our discussion here.

When starting the sparse iterative solver, the system will load
the required data from RAM into the CPU’s cache; this is a
relatively slow process. The cores then access the CPU cache
to load the data into the arithmetic units and perform the
necessary calculations; this process is typically two orders of
magnitude faster than loading data from RAM into the cache.

For the second and subsequent solver iterations we can
distinguish two cases: If the size of the linear system is small
compared to the CPU cache size then the CPU will still have
a copy of all the necessary data in the cache. Since no data
needs to be loaded from RAM into the cache this iteration will
be much faster than the first iteration. Since the cores can
access and process the data from the cache, parallelization
works and the calculation is sped up.

On the other hand, if the linear system size exceeds the CPU
cache size then the system needs to reload the data from RAM
each iteration of the iterative solver. It now does not matter
that the computation can be solved in parallel since even the
speed of performing the computations on a single core far
outstrips the speed of loading data from RAM. The process of
solving the linear system now becomes bandwidth limited.

To find out at what problem size this bandwidth limitation
becomes an issue, we can compare the typical cache sizes of
modern CPUs with the size of the linear system. For example
high-end CPUs like from Intel Xeon family have ~25MB
cache; hence the maximum model size they can accommodate
is around

NE = 25 * 10242 / (2 * 336) ~ 39,010

Other more commonly used CPUs like Intel i7s have only
about 6 to 12MB of cache and hence can accommodate much
smaller systems. In addition, the operating system and other
processes will occupy part of the cache and further reduce this
number. Also, if using more than one component (e.g. NCG
or salt), this number decreases dramatically due to the
quadratic (NC + 1) term.

Two strategies can be employed to overcome or improve the
bandwidth limitation. The first is to use distributed memory
systems, where the linear system is distributed over the RAM
of multiple nodes, i.e. each computer will work on certain
rows of the system. Whenever required the nodes exchange
intermediary results, e.g. via a network connection. This
method allows to add up the bandwidths of the individual
nodes; also, if the linear system is split into sufficiently small
parts, then these will again fit into the caches of the CPUs of
the nodes. The simulators based on the PETSc library, i.e.
TOUGH3 and Waiwera, make use of this method. For
example, O’Sullivan et al. (2019) made use of 320 CPUs for
their 2,300,000-element sized Lihir model. Using the above
equations for estimating the size requirement we see that they
required about 4.6MB per CPU, i.e. they were able to push
the problem below the bandwidth limitation threshold.

The major disadvantage of the distributed memory method is
the high number of nodes required to run large models; further,
one requires access to an adequate computer cluster or the
high capital cost of purchasing such a system. A second
disadvantage is the complexity of SpTSv operations when
using distributed memory; we will discuss this further down.

The second strategy is to push the bandwidth limited
operations of the linear solve to a computational device which
has higher bandwidth than a CPU. Graphical Processing Units
(GPUs) have become popular to solve parallelized
computational problems over the last decade. A great
advantage of these GPUs is that their bandwidth far exceeds
the bandwidth of a CPU. For example high end consumer
grade GPUs like NVIDIA’s GeForce TITAN RTX obtain
bandwidths of up to 672GB/s at a cost of US$2,500; other
high end GPUs reach up to 1000GB/s. For comparison, Intel
Xeon CPUs typically reach only ~30GB/s. Hence depending
on expenditure GPUs can achieve speedups of up to factors
of 30 versus CPUs for the linear solve operation while
employing normal desktop or laptop computers. NVIDIA

New Zealand Geothermal Workshop 2019 Proceedings

25 – 27 November 2009
Auckland, New Zealand

supports linear solver development by providing dense and
sparse library packages for basic linear algebra operations2.

The Volsung package provides two solver architectures: One
CPU based solver for small models or for PCs which are not
fitted with an NVIDIA GPU, and a fully parallelized GPU
solver architecture featuring BiCGStab and GMRES solver
types.

3.2.2. Preconditioner Issues
Sparse iterative solvers typically employ preconditioners to
improve their performance, i.e. to reduce the number of
iterations required. The most often employed preconditioner
is incomplete lower/upper with zero backfill (ILU0). This
preconditioner has the same matrix stencil as the Jacobian
matrix and hence has the same storage requirement. It is based
on finding an upper and lower triangular matrix pair such that

(L*U) = J

However, the above L/U matrices would be dense and require
a huge amount of space; hence ILU0 only calculates the
coefficients on the Jacobian matrix stencil. This reduces the
above equation to an approximation, i.e. (L*U) ~ J. An
approximate solution is all that is required within the iterative
solver; however, the better this approximation the smaller the
number of iterations required. Hence the less coefficients are
used for L/U the more iterations may be required by the solver.

ILU is a highly serial problem since finding the solution for
one row in the system requires knowledge of previous parts
of the solution. Parallelization can be achieved in two ways.
The first method is to use additional block stencils over the
matrix diagonal, as it is done in Jacobi-Block or ASM
preconditioners. Each block can then be solved in parallel on
different nodes. However, using this method means even less
coefficients than for ILU0 are considered and the
preconditioner suffers from degradation effects with
increasing number of stencil blocks.

The second method is making use of the fact that in ILU0
some rows can be solved independently of each other. Rows
are then combined into solve levels; within each level rows
can be solved independently in parallel. The preconditioner is
analyzed once at the beginning of a simulation to determine
the solve levels; since the levels do not change over the
simulation, they can be re-used many times. The advantage of
this strategy is that the full ILU0 can be used, i.e. the quality
of the preconditioner does not degrade. However, since the
number of solve levels is quite high this method does not
work very well on distributed memory systems since it
requires a high number of communications between the nodes.
For GPUs on the other hand the communication part is not
required, hence making this architecture suitable for parallel
ILU0.

3.2.3. Other Considerations
So far, we have only considered situations where the linear
system to be solved did not change, i.e. we assumed different

2 https://docs.nvidia.com/cuda/cuda-
samples/index.html#cusolversp-linear-solver-

simulators would go through exactly the same calculation
steps.

However, there are other factors at play. For example we need
to carefully consider numerical truncation errors when
calculating the Jacobian matrix. This becomes important at
large time-steps since parts of the equations for calculating
the residual vector scale with the time step while other parts
don’t. Exactly how a simulator will perform this calculation
will determine the numerical truncation; if not done properly
it may become harder to find numerical solutions to the linear
system, i.e. more iterations are required.

Similarly, it is quite common to see the number of iterations
of the solver increase with large time steps since the matrix
becomes non-diagonal dominant. At large time-steps solver
breakdown becomes an issue when the internal precision of
the solver is exceeded; this usually means that the current time
step is to be aborted and the step is repeated with a reduced
time step; this comes at a high computational time penalty.

Lastly, it is also common to see super-linear increases in the
number of iterations when approaching the solver breakdown
limit. In this case doubling the time step may result in more
than twice the time required for solving the linear system. It
would be of high interest to find better criteria for time step
adaption in order to improve simulator performance.

3.3. Overall Parallel Performance
When employing parallelization, the overall speedup
achieved is limited by Amdahl’s law (Amdahl 1967). For our
example here where we have two processes—one for
calculating the thermodynamics (TD) and one for linear
solves (LS)—we can calculate the maximum possible
speedup as

Stot = 1.0 / (pTD/STD + pLS/SLS)

Here p stands for the fraction of the computational time the
process needs when run in serial, and S is the speedup for the
process by employing parallelization. We can now calculate
expected speedups; we focus here on typical values
encountered and consider only shared memory systems.

During a steady state simulation, the time step is usually not
constrained; due to the non-diagonal dominance of the matrix
this means that typically more than 90% of the computational
time is spent in the linear solve. We can now consider the
speedup employing parallelization using a modern desktop
CPU, for example an octa-core, versus running the simulation
on a serial simulator like TOUGH2. If we assume that the
model is large and hence bandwidth limited (i.e. no linear
solve speedup) we have

Stot = 1.0 / (0.1 / 8 + 0.9 / 1.0) = 1.10

On the other hand, if we now also speed up the linear solve
process by using a GPU with 15 times the bandwidth of the
GPU we obtain

New Zealand Geothermal Workshop 2019 Proceedings

25 – 27 November 2009
Auckland, New Zealand

Stot = 1.0 / (0.1 / 8 + 0.9 / 15.0) = 13.8

If the time step is constrained during calibration or scenario
runs then the matrix is usually diagonal-dominant and the
linear solve requires less iterations. Typically, the
computational time is now split evenly between calculating
the thermodynamics and performing the linear solve. When
only employing parallelization for the thermodynamic
calculations we will have

Stot = 1.0 / (0.5 / 8 + 0.5 / 1.0) = 1.8

or, when using our GPU example,

Stot = 1.0 / (0.5 / 8 + 0.5 / 15.0) = 10.4

The above calculations suggest that significant speedup on
large models can only be had by breaking the bandwidth
limitation of the CPU, whether by employing distributed
memory computer clusters or by using GPUs. They also
illustrate that, when using GPUs, we can expect the largest
speedups while running steady-state simulations. During
calibration/scenario runs speedup will be more in line with the
number of cores employed for solving the thermodynamic
states, however, the GPU still provides speedup beyond this
limit.

3 TOUGH2 did not record the linear solve time; we used the
total run time as an estimate since the other simulators
indicated that it was by far the dominant computational task

4. PERFORMANCE TESTS
4.1. Steady-State Performance
In this test we wanted to investigate the bandwidth
dependency of the linear solve operation. We chose a 100,000
block model (50×50×40 blocks) with block dimensions
20×20×10 metres, set to a cold initial state (300bar, 20ºC);
this model more than exceeds the CPU cache size of the CPUs
we tested it on. One bottom corner block was set as a fixed
state with high temperature and pressure (500bar, 250ºC);
across the diagonal we produced 1kg/s of fluid from a block
in the top layer. The model used single porosity, 50mD
permeability, specific heat of 1000J/(kg*K), rock density
2650kg/m3, heat conductivity of 2W/(K*m) and 1% porosity.
The simulation was run for 1 million years with no constraints
on the time step. This model was chosen for its simplicity, i.e.
it doesn’t have phase changes.

We ran this model on different simulators—TOUGH2,
TOUGH3 and Volsung; using Volsung we also ran it using
different CPUs and GPUs for solving the linear system and
used different operating systems (Linux and Windows 10).
We then recorded total run time, the time spent on solving the
linear systems 3 and the number of time steps it took the
simulator to solve the simulation.

Table 1 summarizes the run results. A direct comparison of
the times is difficult since the different simulators took a
different number of time steps to move through the simulation
time. TOUGH2 took nearly twice the number of steps (162)

Figure 10: Performance benchmarking versus TOUGH2 and TOUGH3 using different CPU and GPU architectures for
Volsung. The dotted line demonstrates the 1/bandwidth dependency of the linear solve operation for large models.
The slower solution times for Volsung using Windows is understood to be graphics driver issue.

New Zealand Geothermal Workshop 2019 Proceedings

25 – 27 November 2009
Auckland, New Zealand

than Volsung (934); this enabled it to stay competitive versus
Volsung’s simple CPU solver (which is parallelized but not
optimized yet) since the smaller time steps require less
iterations in the linear solver (see discussion in 3.2.3).

TOUGH3 took 845 steps; since it is based on TOUGH2 we
don’t quite understand why it requires so many more time
steps than TOUGH2. We also ran it using 1, 2, 4 and 8 threads
on a quad core CPU and it showed significant runtime
degradation with increasing number of threads. We believe
this is due to the aforementioned preconditioner degradation,
i.e. more and more matrix coefficients are dropped when
increasing the number of stencil blocks/threads.

Since Volsung took the same number of steps we can use its
linear solve time to illustrate the bandwidth dependency of
this operation. Figure 10 shows the linear solve time as a
function of the bandwidth of the architecture used. The dotted
line in this figure highlights the 1/bandwidth dependency of
the operation over a wide range of bandwidths. Using an
RTX2070 GPU (448GB/s) Volsung solved this model
approximately 18 times faster than TOUGH2, about 29 times
faster than TOUGH3 (serial) and 133 times faster than
TOUGH3 (8 threads) through the combination of longer time
steps and faster solver iterations.

We also noted that the Volsung GPU solver requires
significantly longer solve times under Windows 10 than
under Linux operating systems; it appears that this is due to a

4 One run in Volsung took 94 instead of 93 time steps. This
is a behaviour commonly seen when applying

limitation in the Windows driver for NVIDIA graphics cards
when using the GPU for both displaying the screen and
performing GPU calculations at the same time. Further tests
will show if this limitation can be overcome when adding a
second graphics card to a PC for displaying the screen.

4.2. Calibration/Scenario Performance
We performed another set of tests with variations of the #4
test model from the Stanford intercomparison study. We
discretized this model using 18,000, 50,000 and 98,000
blocks and limited the time step to simulate behaviour similar
as encountered in a calibration or scenario run of a simulation.
We tested these models using TOUGH2 and Volsung and
recorded the total run times and number of steps taken for the
run. TOUGH2 and Volsung solved this model using a
comparable number of time steps. Volsung achieved
speedups of 3, 5 and 7 for this model, with speedup increasing
with model size and hence the size of the linear system. These
speedups are in line with expectations with the number of
cores (4) and GPU (256GB/s) used as discussed in section 3.3.

5. CONCLUSIONS
We demonstrated the suitability of the new Volsung software
package by validating it against the industry standard
TOUGH2 simulator. Validation results confirm very good
agreement between the simulators over all problems tested.

Limits to performance enhancement using parallel processes
were discussed. Volsung uses GPUs to address the bandwidth
limitation of the linear solve operation and parallelizes
calculation of thermodynamic states using multi-core CPUs.
The speedups observed qualitatively and quantitatively
demonstrate the performance improvements possible when
solving the finite volume method on shared memory systems.

REFERENCES
Amdahl, G. M. (1967). Validity of the single processor

approach to achieve large scale computing capabilities.
AFIPS Conference Proceedings, 30, 483–485

Battistelli, A., Calore, C., & Pruess, K. (1997). The Simulator
TOUGH2/EWASG for Modelling Geothermal
Reservoirs with Brines and Non-Condensible Gas.
Geothermics, 26(4), 437–464.

Croucher, A., O’Sullivan, J.O., Yeh, A. & O’Sullivan, M..
Benchmarking and experiments with Waiwera, a new
geothermal simulator. Proceedings, 43rd Workshop on
Geothermal Reservoir Engineering Stanford University,
Stanford, California, February 12-14, 2018

Jung, Y., Pau, G. S. H., Finsterle, S., & Pollyea, R. M. (2016).
TOUGH3: A new efficient version of the TOUGH suite
of multiphase flow and transport simulators. Computers
and Geosciences, 108(November), 2–7.

Molloy, M. W. (1981). Geothermal reservoir engineering
code comparison project. Proceedings Special Panel on
Geothermal Model Intercomparison Study 1980,
Stanford University, Stanford, California.

O’Sullivan, J., Croucher, A., Popineau, J., Yeh, A., &
O’Sullivan, M. (2019). Working with Multi-million
Block Geothermal Reservoir Models. Proceedings 44th

parallelization; the results become slightly non-deterministic
due to truncation and order-of-execution differences.

Table 1: Performance benchmarking of Volsung versus
TOUGH2 and TOUGH3.

Label Steps Total
Time [s]

Linear Solve
Time [s]

TOUGH2
(i7-7700HQ) 162 1883.0 1883.0

TOUGH3-2 threads
(i7-7700HQ) 845 4342.0 3587.0

TOUGH3-4 threads
(i7-7700HQ) 845 6999.0 6177.0

TOUGH3-8 threads
(i7-7700HQ) 845 14869.0 13233.0

TOUGH3-serial
(i7-7700HQ) 845 3698.0 2969.0

Volsung CPU
(i7-7700HQ) 93 2154.0 2054.0

Volsung CPU
(i7-7700) 93 1696.0 1632.0

Volsung CPU
(i7-870) 93 4311.0 4155.0

Volsung GTX1050 94 420.0 344.0
Volsung GTX1070 93 227.0 183.0
Volsung
GTX750Ti 93 579.0 477.0

Volsung RTX2070 93 145.0 99.5
Volsung GTX1070
(Win10) 93 689.0 616.0

Volsung RTX2070
(Win 10) 93 631.0 566.0

New Zealand Geothermal Workshop 2019 Proceedings

25 – 27 November 2009
Auckland, New Zealand

Workshop on Geothermal Reservoir Engineering,
Stanford University.

Pruess, K., Oldenburg, C., & Moridis, G. (1999). TOUGH2
User’s Guide, Version 2.0., LBNL-43134.

Saad, Y., & Schultz, M. H. (1986). GMRES: A Generalized
Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems. SIAM J. Sci. Comput., 7(3), 856–869.

Thunderhead (1999). Understanding and Using MINC.
https://www.thunderheadeng.com/files/com/petrasim/U
nderstanding and Using MINC.pdf

van der Vorst, H. A. (1992). Bi-CGSTAB: A Fast and
Smoothly Converging Variant of Bi-CG for the Solution
of Nonsymmetric Linear Systems. SIAM J. Sci.
Comput., 13(2), 631–644.

	Main Menu
	Programme
	Author Index
	INTRODUCING THE VOLSUNG GEOTHERMAL SIMULATOR:
	BENCHMARKING AND PERFORMANCE
	Peter Franz1, Jonathon Clearwater1 and John Burnell2
	ABSTRACT
	1. Introduction
	2. Validation of Volsung
	2.1. Stanford Problem 1
	2.2. Stanford Problem 2
	2.3. Stanford Problem 3
	2.4. Stanford Problem 4
	2.5. Stanford Problem 5
	2.6. Stanford Problem 6
	2.7. MINC
	2.8. EOS with CO2
	2.9. EOS with Salt

	3. Performance Analysis
	3.1. Computing the Residual
	3.2. Solving the Linear System
	3.2.1. General Approach
	3.2.2. Preconditioner Issues
	3.2.3. Other Considerations

	3.3. Overall Parallel Performance

	4. Performance Tests
	4.1. Steady-State Performance
	4.2. Calibration/Scenario Performance

	5. Conclusions
	References

