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ABSTRACT 
The need for numerical models for geothermal pressure 
transient analysis (PTA) has been long recognised. Until 
recently the only tools/software available for PTA in the 
geothermal industry have been based on analytical models, 
which are too simplistic to represent geothermal wells. The 
lack of numerical tools for PTA led to the creation of the 
numerical PTA framework (McLean and Zarrouk, 2017), 
which is a set of guidelines on how to set up and run 
numerical PTA models using TOUGH2 and Python. 
Analysis of the model results and comparison to field data 
required skills in writing auxiliary computer scripts by the 
individual reservoir engineer. Despite assistance from the 
many functions built into Python, numerical PTA was still 
relatively time-consuming and cumbersome to perform. 
Specialized software was necessary to bridge this gap, and 
hence Swanhild was developed, based on the numerical PTA 
framework guidelines. 

This study presents testing of the new Swanhild software 
application. Swanhild forms part of the Volsung geothermal 
reservoir simulation package and is specifically designed to 
run numerical PTA simulations using the standardised 
approach as specified by the numerical PTA framework. The 
application makes numerical PTA straightforward, including 
model setup and inversion with field data. The model 
matching can be performed manually or automated using 
non-linear regression. A comparison between Swanhild and 
the TOUGH2/Python implementation of the numerical PTA 
framework across a range of model parameters reveals no 
practical difference in the model results, thus validating 
Swanhild for use in numerical PTA. Software licenses for 
Swanhild are available for free as part of an ongoing effort 
to enable and promote quality PTA in geothermal wells. 

1. INTRODUCTION 
Pressure transient analysis (PTA) has been largely 
disregarded by the geothermal industry for geothermal wells. 
This overlooked technique is potentially one of the most 
useful tools available to a reservoir engineer. It can inform 
on well condition and also the nature of the wider reservoir 
including boundaries.  

Some of the problems with geothermal PTA have been 
practical issues around collection of field datasets (pressure 
and flow rate, during flow changes). Most of these issues are 
relatively easy to avoid or minimise with appropriate design 
of the well testing program (Zarrouk and McLean, 2017). 
The bigger issue to overcome has been a lack of appropriate 
tools for analysis of geothermal datasets. Conventional tools 
(plots and software) have been based on analytical models 
which are too simplistic to represent geothermal reservoirs, 
due fundamentally to their non-isothermal and potential two-

phase nature. The requirement for numerical tools has been 
recognised for a long time, however the specialised 
knowledge required to set up and run numerical models 
using appropriate reservoir simulators has been an 
impediment.  

The numerical PTA framework was created in order to assist 
with this issue. It is a set of guidelines on how to set up and 
run numerical models for PTA, using TOUGH2 (Pruess et 
al., 1999) and Python, though the guidelines are generally 
applicable to all reservoir simulators. While the framework 
does enable numerical PTA to a much greater extent than 
before, it does require knowledge of coding in Python. For 
rapid and effective PTA of field data with no knowledge of 
numerical simulators or coding required, the software 
application Swanhild has been developed using the Volsung 
reservoir simulation package (Clearwater and Franz, 2019; 
Franz et al., 2019), and tested against the TOUGH2/Python 
implementation of the numerical PTA framework.  

2. BACKGROUND 

2.1 Pressure transient analysis 
Pressure transient analysis refers to the analysis of pressure 
transients which are induced by flow rate changes in a well. 
Historically these have been simple step changes in flow rate, 
such as: cessation of production inducing a buildup pressure 
response, or cessation of injection inducing a pressure falloff 
response. Modern methods involving time superposition 
allow any step change in flow rate to be analysed by PTA, 
including between non-zero flow rates (Zarrouk and 
McLean, 2019). In fact, pressure transients between non-zero 
flow rates are recommended testing practice (Figure 1) in 
order to avoid/minimise a range of practical issues which can 
arise with data collection in geothermal wells (Zarrouk and 
McLean, 2019).  

 

Figure 1: Example of a 4 flow-rate injection test design 
with 3 pressure transients, all measured between 
non-zero flow rates.  

The Bourdet pressure derivative plot is a log-log plot of 
pressure and pressure derivative (Bourdet, 2002). It is widely 
regarded as the most significant advance in the history of 
PTA (Houzé et al., 2012). This is because the pressure 
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derivative has characteristic shapes for many different flow 
regimes and reservoir/boundary behaviours (Figure 2), and 
is therefore the key to diagnosing which model may be a 
good match to a set of field data.  

 

Figure 2: Examples of characteristic pressure derivative 
shapes (from Zarrouk and McLean, 2019).  

2.2 The need for numerical PTA for geothermal wells 
Conventional PTA involves matching models to field data, 
where the model response is calculated analytically. There 
are a variety of limitations to analytical PTA models in 
geothermal reservoirs, as many assumptions of the pressure 
diffusivity equation (which underlies all analytical models) 
are violated in geothermal reservoirs. In particular, 
geothermal reservoirs are non-isothermal and have non-
uniform fluid properties (McLean and Zarrouk, 2017).  

A strongly non-isothermal scenario is created during 
completion testing by injecting ambient temperature water 
into geothermal reservoirs, which can be over 300°C. This is 
a particularly obvious example of the inapplicability of 
analytical models, which require the assumption of a single 
fluid temperature. Failure to account for the non-isothermal 
scenario can lead to massive overestimates in both reservoir 
permeability and skin factor (McLean and Zarrouk, 2015; 
Guerra and O’Sullivan, 2018).  

O’Sullivan et al. (2005) also recognised this gap, and created 
the first software for numerical PTA, AWTAS, which 
generates the model response using the simulator TOUGH2. 
AWTAS had a range of model options and built-in inverse 
modelling capability. Unfortunately AWTAS was developed 
for a private client and was never widely available. Also the 
graphical user interface was written in a programming code 
which is now obsolete (Zarrouk and McLean, 2019).  

2.3 The numerical PTA framework 
The numerical PTA framework is a set of guidelines 
developed to guide in the implementation of numerical 
models for geothermal PTA. While McLean and Zarrouk 
(2017) implemented the framework using Python to control 
the numerical simulator TOUGH2, the guidelines are 
applicable to other reservoir simulators. The guidelines cover 
details of the radial grid setup, which includes a well block, 
skin zone and reservoir zone (Figure 3), and also time 
stepping and other reservoir parameters.  

The objective of the numerical PTA framework is to aid the 
reservoir engineer with the multiple decisions necessary in 
the setup of such models, and at the same time promote 
comparability of results (McLean and Zarrouk, 2017).  

 

 

Figure 3: Schematic of radial model grid domains: not to 
scale and does not show all blocks (modified from 
McLean and Zarrouk, 2017).  

3. THE SWANHILD GUI 
The Swanhild graphical user interface (GUI) is an addition 
to the Volsung geothermal reservoir modelling software 
package. It has been specifically designed for numerical 
pressure transient analysis. PTA requires substantially less 
functionality than what is offered by the main Brynhild user 
interface in Volsung; Swanhild therefore utilises only the 
limited functionality required and facilitates setting up 
simulations using commonly used concepts in PTA. 

A logarithmically spaced grid is used for PTA, based on the 
guidelines of the numerical PTA framework. The user can 
edit key features like well volume, wellbore and skin radii 
and the extent of the reservoir boundary. Non-infinite 
boundaries like channels and fixed boundaries to one side are 
supported. The fractional dimension model is implemented, 
so the grid can be linear, radial, spherical or any non-integer 
dimension in-between.  

The model is split into three different domains as per the 
numerical PTA framework: the wellbore, the skin zone and 
the reservoir zone (Figure 3). For each domain the user can 
define the initial state and rock properties (including MINC 
- Multiple INteracting Continua; Pruess and Narasimhan, 
1985). Permeability is set as a scalar for the reservoir. The 
permeability in the skin zone ks is calculated via the skin 
factor. The permeability of the well block is set at 1000 times 
the reservoir permeability. 

Injection/production is defined as a table of mass rate steps. 
Each step in the table is interpreted as a transient period, i.e. 
later analysis can be performed for each of these periods. 

Time settings include the start time and duration of the test. 
Time steps are logarithmically spaced, growing from a 
minimum step size by a constant factor up to a maximum 
step size set by the user. At each flow rate change the time 
step is reduced again to the minimum time step. 

Swanhild further has the capability to import and display 
pressure field data to which the simulation data can be 
compared. 

The GUI has three main charts for viewing the data:  

1. A chronological chart is used for displaying data traces 
(pressure and flow rate) in comparison to real time and 
is good for getting an overview of the entire dataset, 
which can include multiple transient periods.  
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2. Pressure history plot: a linear chart plots the selected 
transient period as delta pressure versus delta time, 
where the offsets for both pressure and time are 
determined at the beginning of each transient period. 

3. Pressure derivative plot: a log-log plot displaying 
pressure and pressure derivative as shown in Figure 4. 
It is traditionally the main plot used for test diagnosis 
and model matching.  

 

Figure 4: Example pressure derivative plot from 
Swanhild GUI.  

In addition to the above, the GUI also contains a simple 3D 
viewer (Figure 5). The radial model is mathematically one-
dimensional, and while features such as linear impermeable 
boundaries and fractional dimension reservoirs can be 
implicitly represented via modifications to the radial model 
grid, they cannot be directly displayed in 3D. However, the 
simple 3D viewer displays the radial grid as a narrow wedge, 
which can be zoomed and cells individually selected. This 
can be used to investigate the thermophysical properties of 
each cell of the simulation, and the extent of pressure 
disturbance into the reservoir from the well testing (radius of 
detection). There is also a text log detailing the progress and 
issues of a simulation run. 

 

Figure 5: Simple 3D grid viewer example: a radial model 
grid appears as a wedge, however the block volumes 
and connection areas correspond to a radial model.  

4. COMPARISON OF SWANHILD AND 
TOUGH2/PYTHON IMPLEMENTATION 
The numerical PTA framework was implemented in 
TOUGH2 and Python by McLean and Zarrouk (2017); 
however the guidelines are generally applicable to any 
reservoir simulator. The implementation of the numerical 
PTA framework in Swanhild utilises the Volsung reservoir 
simulator rather than TOUGH2. Advantages of Volsung 
over TOUGH2 include: 

• Better control of time stepping: not limited to 104 
non-uniform time steps.  

• Full numerical precision in both pressure and 
time output; this issue is very important when 
dealing with derivatives. In TOUGH2 the 
simulation had to be restarted with every flow 
rate change due to this issue. 

• Model input is automatically generated by the 
GUI. 

• Field data can be directly included in the model 
and analyzed in the same manner as simulation 
output for true one-on-one comparisons. 

In order to validate the Swanhild implementation, Swanhild 
model results are compared to those from TOUGH2/Python, 
for a base model and then across a range of variable model 
parameters.  

4.1 Base model (A1) 
The base model radial grid was set up following all the 
guidelines of the numerical PTA framework, including the 
following parameters which remain constant for this 
investigation:  

• 50 blocks in the skin zone (recommended 
default).  

• 100 blocks in the reservoir zone (recommended 
default). 

• Porosity of the well block = 0.9 (recommended 
default). 

• Permeability of the well block = 1000 times 
permeability of reservoir (recommended default). 

• Layer thickness of 1000 m, being in the typical 
range for open-hole sections in geothermal wells.  

The parameter values for the base model are summarised in 
Table 1. The simulation is of a pressure buildup from a 
single injection flow step. The base model is isothermal as 
the injectate temperature is the same as the initial reservoir 
temperature (Table 1).  

Table 1: Model parameter values for base model (A1) 

Model ID A1 
Description Base model 
Parameter Units Value 
Well radius rw m 0.11 
Well volume V m3 100 
Well compressibility C Pa-1 8.00e-08 
Transient duration s 14,400 
Injection flow rate kg/s 20 
Initial reservoir pressure Pi bara 110 
Initial reservoir temperature Ti °C 250 
Injectate temperature Tinj °C 250 
Fractional dimension n - 2.0 
Reservoir permeability k m2 1.0e-14 
Skin factor s - 0 
Differentiation interval - 0.2 
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The Swanhild base model results are indistinguishable from 
an equivalent base model with the same parameters using 
TOUGH2/Python, in both the pressure history plot (Figure 
6) and pressure derivative plot (Figure 7). Note in these plots 
the TOUGH2/Python data equals the sub-sampled data; a 
difference between these is only visible in noisy field data 
sets. 

 

Figure 6: Pressure history plot comparing base model A1 
results from Swanhild and TOUGH2/Python 
implementations.  

 

Figure 7: Pressure derivative plot comparing base model 
results from Swanhild and TOUGH2/Python 
implementations. 

4.2 Test models phase 1 
Twenty-one test models (models A2-A22) were created to 
assess whether the success of Swanhild in matching the 
TOUGH2/Python implementation remains the case across a 
range of variable model parameters. The changes from the 
base model parameters (Table 1) for the test models are 
summarised in (Table 2). In most cases only a single 
parameter is changed for each model.  

For most of the test models there is negligible difference in 
the model results, as was the case for the base model A1 
(Figure 6 and Figure 7). However there is a minor difference 
in the results of three test models: 

• Non-isothermal models A5 and A6: shown in 
Figure 8 (pressure history plot) and Figure 9 
(pressure derivative plot) for model A5, the more 
strongly non-isothermal case of the two. 

• Hotter and deeper model A16: shown in Figure 
10 (pressure history plot) and Figure 11 (pressure 
derivative plot).  

These minor differences in the A5, A6 and A16 results are 
likely due to differences in the calculation of thermodynamic 
fluid properties between the simulators Volsung and 
TOUGH2 - Volsung uses IAPWS-97IF while TOUGH2 uses 
IFC-67. These are the only test models involving differences 
in pressure and temperature, which control thermodynamic 
properties. The differences are of the same order of 
magnitude as the difference observed by McLean and 
Zarrouk (2017) between two different versions of TOUGH2. 
This is not an issue provided that models to be directly 
compared are generated using the same simulator (McLean 
and Zarrouk, 2017).  

Table 2: Summary of test models (A2-A22) parameter 
changes from base model values. 

Model 
ID Description 

Change to base 
model 

parameter 
A2 Well compressibility increase C = 8.00e-07 Pa-1 
A3 Well compressibility decrease C = 8.00e-09 Pa-1 
A4 Longer transient duration 1,440,000 s 
A5 Non-isothermal #1 Tinj  = 40 °C 

A6 Non-isothermal #2 Tinj  = 70 °C 
A7 Reservoir perm. increase k = 1.0e-13 m2 
A8 Reservoir perm. decrease k = 1.0e-15 m2 
A9 Positive skin factor #1 s = 5 

A10 Positive skin factor #2 s = 10 
A11 Negative skin factor #1 s = -2 
A12 Negative skin factor #2 s = -3 
A13 Bigger well radius rw= 0.2 m 
A14 Bigger well volume V = 150 m3 
A15 Smaller well volume V = 70 m3 

A16 Deeper and hotter well 
Pi  = 150 bara 
Ti  = 300 °C 
Tinj  = 300 °C 

A17 Lower flow rate rate = 5 kg/s 
A18 Higher flow rate rate = 50 kg/s 
A19 Longer differentiation interval 0.4 
A20 Shorter differentiation interval 0.1 
A21 Higher fractional dimension n = 2.5 
A22 Lower fractional dimension n = 1.5 

 

 

Figure 8: Pressure history plot comparing test model A5 
(non-isothermal) results from Swanhild and 
TOUGH2/Python implementations.  
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Figure 9: Pressure derivative plot comparing test model 

A5 (non-isothermal) results from Swanhild and 
TOUGH2/Python implementations. 

 

Figure 10: Pressure history plot comparing test model 
A16 (hotter and deeper) results from Swanhild and 
TOUGH2/Python implementations.  

 
Figure 11: Pressure derivative plot comparing test model 

A16 (hotter and deeper) results from Swanhild and 
TOUGH2/Python implementations. 

It should be noted that the major change in shape of the 
pressure derivative in Figure 9 as compared to Figure 7 (base 
model) is purely the result of non-isothermal effects from 
injecting cold water into a hot reservoir with no prior 
cooling. It is not reflective of any change in the nature of the 
reservoir. Distortion of the characteristic shapes of the 
pressure derivative by these non-isothermal effects is a 
recognised phenomenon (McLean, 2020). It is necessary to 
include the reservoir cooling induced by drilling injection in 
the simulation to avoid this distortion and to have a chance 
of matching real-life field data. 

One further difference between the TOUGH2/Python and 
Swanhild implementation was found in the treatment of the 
change in porosity due to compressibility/expansivity. Both 
simulators calculate the change in porosity in the same way 
but differ in the way they treat the rock volume fraction. 
TOUGH2 simply keeps the rock volume fraction constant to 
its initial value. This implicitly changes the block volume 
since the rock volume fraction plus the porosity no longer 
add up to unity. In the Swanhild implementation an increase 
in porosity reduces the rock volume fraction; the energy 
balance is preserved by adjusting the rock grain density.  
Both implementations give equivalent results under most 
circumstances. A downside of the TOUGH2 approach is that 
it does not honor the grid geometry. Swanhild fixes this by 
ensuring the porosity plus rock volume fraction equal unity; 
however, under artificial conditions in which the rock 
volume fraction approaches zero the pressure can spike. In 
practice this behaviour is of little importance and can be 
adjusted by changing the well block volume and its porosity 
value. 

4.3 Test models phase 2 
Due to the fluid thermodynamic property-related difference 
in the model results from phase 1 (strongest in test model 
A16, Figure 10), a subset of test models was created in order 
to further investigate this difference. The parameters of these 
additional test models are specified in Table 3.  

The results in Table 3 show the difference in the pressure at 
the finish time of the simulation between TOUGH2 and 
Swanhild. A clear trend in temperature is visible, i.e. the 
pressure difference (TOUGH2 minus Swanhild) increases 
with temperature. The overall difference however is small. 
To further analyze this behaviour we would need to make a 
detailed comparison between the TOUGH2 and Swanhild 
implementations of the relevant quantities, i.e. viscosity, 
density and compressibility. However this is beyond the 
scope of this work. 

Table 3: Summary of test models (A16 B to L) parameter 
changes from base model. The relative difference is 
the observed difference between the TOUGH2 and 
Swanhild model runs at the finish time. 

Model 
ID 

Pi 
[bara] 

Ti  

[°C] 
Tinj  
[°C] 

Relative difference 
TOUGH2 - 
Swanhild 

A16-B 100 100 100 -0.08 bar 
A16-C 100 200 200 -0.03 bar 
A16-D 100 300 300 +0.11 bar 

A16-E 125 100 100 -0.09 bar 
A16-F 125 200 200 -0.03 bar 
A16-G 125 300 300 +0.09 bar 

A16-H 150 100 100 -0.09 bar 
A16-I 150 200 200 -0.03 bar 
A16 150 300 300 +0.09 bar 

A16-J 200 100 100 -0.10 bar 
A16-K 200 200 200 -0.03 bar 
A16-L 200 300 300 +0.08 bar 

A1 base 
model 110 250 250 +0.01 bar 
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5. INVERSE MODELLING CAPABILITIES 
5.1 Description 
The typical problem in PTA analysis is to determine 
reservoir properties from the pressure transient field data. 
The pressure derivative plot is a very useful part of this 
process, though it utilises superposition time in the 
calculation of the pressure derivative, in order to account for 
the entire flow history. Superposition time strictly only 
applies to mathematically linear systems, with radial flow 
(fractional dimension of n = 2.0). However despite this, the 
pressure derivative plot remains the key diagnostic tool to 
identify which model is likely to match the field data, based 
on characteristic shapes (McLean, 2020).  

Reservoir properties are not determined directly from 
features of the pressure derivative plot, as they have been 
with historic graphical methods (for example using the slope 
of a straight line in a semilog plot to calculate the reservoir 
permeability). The reservoir properties are determined by 
inverse modelling, which has the advantage that it can deal 
with non-ideal, complicated models. Its disadvantage is that 
it is computationally expensive and may require a starting 
point which is already close to the final solution. 

Swanhild uses PEST (Doherty, 2018) for parameter 
estimation purposes. PEST is available as free software and 
has been extensively used for inverse modelling purposes 
due to its flexible interface. However setting up an inverse 
modelling problem with PEST is still time consuming and 
daunting for a beginner. Also, due its broad range of 
functionality, new PEST users have to learn about a large 
number of control parameters and figure out their 
applicability and default values. 

Swanhild makes this process easier by fully automating the 
setup and running of the inverse simulation. An advanced 
user could still edit most of the PEST control parameters; 
however they are already setup with sensible default values 
and most of the time the user doesn’t need to alter them at 
all. Hence the user only requires some basic knowledge 
about the inverse modelling process. 

The inverse modelling can be performed in parallel with 
BEOPEST which can speed up the simulation significantly. 
Typical runtimes for an inverse model with multiple 
parameters are in the order of several minutes when using a 
modern multi-core CPU. 

The inverse modelling process starts with the user entering 
field data and performing manual data quality control. An 
important parameter which needs to be determined at this 
stage is the datum shift, i.e. the time lag between change in 
flow rate and the response seen by the pressure sensor. 

Next the subsampling type needs to be selected. If the user 
opts for no subsampling then only basic operations like 
datum shift and removal of data points outside of the test 
period are performed. The default logarithmic subsampling 
type employs a user defined number of bins per log cycle. 
Logarithmically spaced time intervals are chosen, starting 
with a small value at each flow rate change. For each interval 
the average pressure and average time is found and used as 

subsampled data. This process is of importance for the 
inverse modelling since field pressure data is typically 
sampled at constant intervals. If no subsampling is applied 
then only a few data points will be influential for the early-
time parameters like wellbore volume and skin, while the 
later data dominates the objective function. 

Another way of modifying the importance of some data is by 
giving it a different weight in the objective function. For this 
optional purpose the user can enter a table of weights. For 
example it is possible to eliminate all weights of early-time 
data so the inverse modelling process focuses on later data. 

After the preparation steps the user selects one or more free 
parameters; currently about a dozen different choices are 
available. The most important ones are the wellbore volume, 
the skin factor and the formation permeability. When using 
real-world data it is also very important to include the initial 
pressure as a free parameter so that the inverse model zeroes 
in on the same mean pressure; neglecting to include this 
parameter can lead to skewed results or failure of PEST to 
find a solution. 

Running of the PEST inverse model including generation of 
all auxiliary files is fully automatic. On completion all 
auxiliary information such as the run control log or 
parameter sensitivity output are presented. On user 
acceptance the best parameters found are set and the model 
is run again to display the final match to the field data. 

5.2 Inverse modelling example 
To demonstrate the inverse modelling capabilities in 
Swanhild we generated a simple test model using three 
consecutive flow rate steps of 10, 20 and 30 kg/s spaced 8 
hours apart. We ran this model forward and generated output 
at high frequency, i.e. at least one data point every 10 
seconds. From this data we generated two data sets. The first 
contains the exact pressure over time from the model run. 

For the second data set we added significant noise to the 
pressure data. The noise was generated using a normal 
distribution with a standard deviation of 0.2bar. For 
comparison, the model was run at a pressure of ~200bar, with 
the response to the flow rate being ~5bar. So while the 
synthetic instrument error is only about 0.2/200=0.1% the 
actual noise to signal ratio 0.2/5=4% is quite high and typical 
for a pressure test. Figure 12 shows this dataset, along with 
subsampled data and the final simulation results. 

For the inverse modelling process we chose as free 
parameters the initial pressure, the formation permeability, 
skin factor and well volume. Logarithmic subsampling was 
used with 100 bins per log cycle. The inverse modelling 
process was started using an initial set of parameters which 
was quite far from the final solution with the exception of the 
initial pressure. Experience has shown that this particular 
parameter needs to be close to the real value otherwise PEST 
can struggle to find a valid solution.  
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Figure 12: Chronological plot for 3-flow-step test, displaying mass flow rate, field pressure data (red and grey) and modelled 
pressure (blue line). First transient period is highlighted in light grey.  

Table 4: Estimated parameters from inverse modelling example: initial values are the starting point for inverse modelling. 

Parameter Initial Value True Value Final Value – Dataset without Noise Final Value – Noisy Dataset 

Initial Pressure Pi 197.75 bara 198.00 bara 198.00 bara 197.99 bara 

Skin Factor s 2.00 0.00 0.06 0.43 

Formation Permeability k 50.00 mD 10.00 mD 10.07 mD 10.59 mD 

Well Volume V 100.00 m3 150.00 m3 150.59 m3 148.44 m3 
 

 

Figure 13: Pressure derivative plot for first transient period of Figure 12, showing pressure and derivative for the field data 
and the model. Grey dashed lines are unfiltered field data. Red points are logarithmically subsampled field data. 
Derivatives are shown in dashed blue lines for the model and dashed red lines for the subsampled field data. 
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The results from the inverse modelling process for both 
models are shown in Table 4, together with the true and 
initial parameter choices. The results demonstrate an 
excellent capability of PEST to reconstruct the values for the 
dataset with no noise. For the dataset with noise the results 
are still very good; the exception seems to be the skin factor 
which would probably require more or better mid-times data 
for its precise evaluation. 

Figure 13 shows the pressure derivative plot for the first 
transient in this example for the noisy dataset using a 
smoothing interval of 0.2 (differentiation interval). 
Traditionally the formation permeability would be 
determined using the final slope in this plot. Judging by the 
amount of noise, even after smoothing, it would be quite 
difficult to determine a meaningful value for the permeability 
in this fashion. However repetitive inverse modelling runs 
using different initial parameters have shown that PEST 
strongly zooms in onto the true value for the permeability. 
This demonstrates that inverse modelling has great potential 
in use for PTA. 

 
6. CONCLUSIONS 
• Swanhild is an effective implementation of the 

numerical PTA framework, enabling rapid analysis 
of geothermal PTA datasets without any requirement 
for specialised knowledge of numerical simulators or 
coding.  

• The Swanhild results which use the Volsung 
reservoir simulator have been validated by 
comparison with the results of a TOUGH2/Python 
implementation of the numerical PTA framework.  

• Across a range of model parameter values there is 
negligible difference in model results between the 
two simulators.  

• The only exception to this is a minor difference in 
some models related to different calculations of 
thermodynamic properties within the two simulators, 
for different temperature conditions. This difference 
is not significant in the PTA context and is of the 
order of magnitude to be expected between different 
simulators. It does not affect the shape of the 
pressure derivative.  

• The use of PEST for inverse modelling has been 
successfully demonstrated on a model with both 
clean and noisy data. In both cases Swanhild/PEST 
was able to find parameters close to their true values.  
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