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Introduction

The mechanical behaviour of soils and rocks may be modelled at various degrees of accuracy.
Hooke's law of linear, isotropic elasticity, for example, may be thought of as the simplest
available stress-strain relationship. As it involves only two input parameters, i.e. Young's
modulus, E, and Poisson's ratio,v, it is generally too crude to capture essential features of

soil and rock behaviour. The linear elastic perfectly plastic model (Mohr-Coulomb) may be
considered as a first order approximation of soil or rock behaviour. However, PLAXIS includes
more advanced material models involving specific features such as stress-dependency of
stiffness, strain-hardening /softening, memory of pre-consolidation, critical state, anisotropy,
creep, swelling and shrinkage. Users are encouraged to employ the advanced models in an
attempt to simulate the behaviour of soils and rocks more realistically, thereby obtaining more
accurate results from their PLAXIS calculations. The use of the SoilTest facility may help in
calibrating the corresponding model parameters. An overview of the applicability of the material
models is given in B Applicability of the material models (p. 246).

1.1 Material Models and Licencing levels

Soil/material models in PLAXIS 2D are offered for different licence levels (See General
Information Manual). In this manual, soil models available for each licence level can be identified
as follows:

* Material models with no identification - generally available for PLAXIS 2D licence.

¢ [ADV] - Material models available only for users with PLAXIS 2D/PLAXIS 3D Advanced
licence.

® [ULT] - Material models available only for users with PLAXIS 2D/PLAXIS 3D Ultimate licence.
* [GSE] - Material models available only for users with Geotechnical SELECT subscription.



A compilation of the different soil models offered by PLAXIS 2D with their associated licence can
be check in E Soil Models and License levels (p. 256).

1.2 On the use of different models

1.21! Linear Elastic model (LE)

The Linear Elastic model is based on Hooke's law of isotropic elasticity. It involves two basic
elastic parameters, i.e. Young's modulus E and Poisson's ratio v. Although the Linear Elastic
model is not suitable to model soil, it may be used to model stiff volumes in the soil, like concrete
walls, or intact rock formations.

1.2.2 Mohr-Coulomb model (MC)

The linear elastic perfectly-plastic Mohr-Coulomb model involves five input parameters,

i.e. E and v for soil elasticity; ¢ and c for soil plasticity and ¢ as an angle of dilatancy. This
Mohr-Coulomb model represents a 'first-order' approximation of soil or rock behaviour. It is
recommended to use this model for a first analysis of the problem considered. For each layer
one estimates a constant average stiffness or a stiffness that increases linearly with depth. Due
to this constant stiffness, computations tend to be relatively fast and one obtains a first estimate
of deformations.

1.2.3| Hoek-Brown model (HB)

The Hoek-Brown model is an isotropic elastic perfectly-plastic model for weathered rock based
on the 2002 edition of the Hoek-Brown failure criterion. This non-linear stress-dependent
criterion describes shear failure and tensile failure by a continuous function, and is familiar

to most geologists and rock engineers. Besides the elastic parameters (E and V), the model
involves practical rock parameters such as the uni-axial compressive strength of the intact rock
(oci), the Geological Strength Index (GSI), and the disturbance factor (D).

1.2.4| Jointed Rock model (JR)

The Jointed Rock model is an anisotropic elastic-plastic model, especially meant to simulate the
behaviour of rock layers involving stratification and particular fault directions. Plasticity can only
occur in a maximum of three shear directions (shear planes). Each plane has its own strength
parameters ¥ and c. The intact rock is considered to behave fully elastic with constant stiffness
properties E and V. Reduced elastic properties may be defined for the stratification direction.

1.2.5! Hardening Soil model (HS)

The Hardening Soil model is an advanced model for the simulation of soil behaviour. As for the
Mohr-Coulomb model, limiting states of stress are described by means of the friction angle,

¥, the cohesion, ¢, and the dilatancy angle, §. However, soil stiffness is described much more
accurately by using three different input stiffnesses: the triaxial loading stiffness, Esg, the triaxial
unloading stiffness, E,;, and the oedometer loading stiffness, E,.q4. As average values for various
soil types, E.. = 3E5 and E.q =~ Es5 are suggested as default settings, but both very soft and
very stiff soils tend to give other ratios of Eocd/Es0, which can be entered by the user.

In contrast to the Mohr-Coulomb model, the Hardening Soil model also accounts for stress-
dependency of stiffness moduli. This means that all stiffnesses increase with pressure. Hence,
all three input stiffnesses relate to a reference stress, usually taken as 100 kPa (1 bar).

1.2 On the use of different models | 8



Besides the model parameters mentioned above, initial soil conditions, such as pre-
consolidation, play an essential role in most soil deformation problems. This can be taken into
account in the initial stress generation.

1.2.6 | Hardening Soil model with small-strain stiffness (HSsmall)

The Hardening Soil model with small-strain stiffness (HSsmall) is a modification of the above
Hardening Soil model that accounts for the increased stiffness of soils at small strains. At low
strain levels most soils exhibit a higher stiffness than at engineering strain levels, and this
stiffness varies non-linearly with strain. This behaviour is described in the HSsmall model using

an additional strain-history parameter and two additional material parameters, i.e. Ggef and 70.7.

G/ is the small-strain shear modulus and 0.7 is the strain level at which the shear modulus
has reduced to about 70% of the small-strain shear modulus. The advanced features of the
HSsmall model are most apparent in working load conditions. Here, the model gives more
reliable displacements than the HS model. When used in dynamic applications, the Hardening
Soil model with small-strain stiffness also introduces hysteretic material damping.

1.2.7 | Modified Cam-Clay model (MCC)

The Modified Cam-Clay model is a well known model from international soil modelling literature;
see for example Muir Wood (1990). It is meant primarily for the modelling of near normally-
consolidated clay-type soils. This model has been added to PLAXIS to allow for a comparison
with other codes.

1.2.8| NGI-ADP model

The NGI-ADP model is an anisotropic undrained shear strength model. The soil shear strength
is defined by means of S, values for active, passive and direct simple shear stress states. The
model may be used for onshore and offshore applications in undrained clays and silts.

1.2.9| Soft Soil model (SS) - [ADV]

The Soft Soil model is a Cam-Clay type model especially meant for primary compression of
near normally-consolidated clay-type soils. Although the modelling capabilities of this model
are generally superseded by the Hardening Soil model, the Soft Soil model is better capable to
model the compression behaviour of very soft soils.

1.2.10! Soft Soil Creep model (SSC) - [ADV]

The Hardening Soil model is generally suitable for all soils, but it does not account for viscous
effects, i.e. creep and stress relaxation. In fact, all soils exhibit some creep and primary
compression is thus followed by a certain amount of secondary compression.

The latter is most dominant in soft soils, i.e. normally consolidated clays, silts and peat, and
PLAXIS thus implemented a model under the name Soft Soil Creep model. The Soft Soil Creep
model has been developed primarily for application to settlement problems of foundations,
embankments, etc. For unloading problems, as normally encountered in tunnelling and other
excavation problems, the Soft Soil Creep model hardly supersedes the simple Mohr-Coulomb
model. As for the Hardening Soil model, proper initial soil conditions are also essential when
using the Soft Soil Creep model. This also includes data on the pre-consolidation stress, as the
model accounts for the effect of overconsolidation. Note that the initial overconsolidation ratio
also determines the initial creep rate.

1Introduction | 9



1.2.11! Sekiguchi-Ohta model - [ADV]

The Sekiguchi-Ohta model is a Cam-Clay type of model with anisotropic yield contour defined

by K2 . Two versions of the model exist: The inviscid model is a time independent model which
has similarities with the Soft Soil model. The viscid model is time-dependent and has similarities
with the Soft Soil Creep model. Both models have been developed in Japan. These models
were previously available as user-defined models, but have become standard models in PLAXIS
nowadays.

1.212| UDCAM-S model - [ADV]

The Simplified UnDrained Cyclic Accumulation Model (UDCAM-S) is an advanced model to deal
with undrained soil behaviour and degradation of the strength and stiffness in cyclic loading of
clay or very low permeabile silty soils. The UDCAM-S model is derived from the complex UDCAM
model by NGI (Andersen & Jostad, 2009) with simplifications in order to be more suitable for
engineering practice. The material model is based on the NGI-ADP model for the undrained
behaviour of clays, implementing a pre-processing procedure called cyclic accumulation tool
(See the Reference Manual - Chapter 6 - Cyclic accumulation and optimisation tool) to obtain
the degraded parameter set based on the type of analysis the user has to perform.

1.213 | Concrete model - [ADV]

The Concrete model is an advanced elastoplastic model for concrete and shotcrete structures.
It simulates the time-dependent strength and stiffness of concrete, strain hardening-softening in
compression and tension as well as creep and shrinkage. The failure criterion involves a Mohr-
Coulomb vyield surface for deviatoric loading, which is combined with a Rankine yield surface

in the tensile regime. The Concrete model employs 25 input parameters, but most of them can
be derived from standard uniaxial tensile and compression tests and are generally familiar to
structural engineers.

1.2.14 | UBC3D-PLM model - [ULT]

The UBC3D-PLM model is an advanced model for the simulation of liquefaction behaviour

in dynamic applications. The UBC3D-PLM model employs two yield surfaces to guarantee a
smooth transition near the mobilised friction angle. The UBC3D-PLM model uses the Mohr-
Coulomb yield condition with an hardening law similar to the Hardening Soil model. For the
secondary state, the UBC3D-PLM model incorporates a densification law through a second yield
surface with a kinematic hardening rule based on the number of loading cycles. This correlation
improves the precision of the evolution of the excess pore pressure.

The dynamic applications require a deep and extended investigation of the soil deposit.
However, the UBC3D-PLM model implements a specific formulation with input parameters based
on the most common tests: drained triaxial tests (CD TxC) or standard penetration tests (SPT).

1.2.15 | Calibration of model parameters using the SoilTest facility - [GSE]

The SoilTest facility may be used to check the performance of material models and the chosen
model parameters in well defined soil lab test conditions as well as in arbitrary stress-strain
conditions. In this way, users can compare the model response with real lab test data and get

a feel for the accuracy at which real soil behaviour is approximated by the model. Even if a
perfect match is obtained, it is good to realise that using calibrated material models in practical
applications (where conditions are different than in the lab) may still lead to differences between
the finite element model and reality. Nevertheless, the use of the SoilTest facility can help in
understanding the capabilities and limitations of the material model and the influence of the
model parameters.
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1.3  Limitations

The PLAXIS code and its soil models have been developed to perform calculations of realistic
geotechnical problems. In this respect PLAXIS can be considered as a geotechnical simulation
tool. The soil models can be regarded as a qualitative representation of soil behaviour whereas
the model parameters are used to quantify the soil characteristics. Although much care has
been taken for the development of the PLAXIS code and its soil models, the simulation of reality
remains an approximation, which implicitly involves some inevitable numerical and modelling
errors. Moreover, the accuracy at which reality is approximated depends highly on the expertise
of the user regarding the modelling of the problem, the understanding of the soil models and
their limitations, the selection of model parameters, and the ability to judge the reliability of the
computational results.

Some of the limitations in the currently available models are listed below:

1.3.1/ Linear Elastic model

Linear Elastic model Soil behaviour is highly non-linear and irreversible. The linear elastic model
is insufficient to capture the essential features of soil. The use of the linear elastic model may,
however, be considered to model strong massive structures in the soil or bedrock layers. Stress
states in the linear elastic model are not limited in any way, which means that the model shows
infinite strength. Be careful using this model for materials that are loaded up to their material
strength.

1.3.2 Mohr-Coulomb model

The linear elastic perfectly-plastic Mohr-Coulomb model is a first order model that includes
only a limited number of features that soil behaviour shows in reality. Although the increase

of stiffness with depth can be taken into account, the Mohr-Coulomb model does neither
include stress-dependency nor stress-path dependency nor strain dependency of stiffness or
anisotropic stiffness. In general, effective stress states at failure are quite well described using
the Mohr-Coulomb failure criterion with effective strength parameters ¢' and c'. For undrained
materials, the Mohr-Coulomb model may be used with the friction angle ¢ set to 0° and the
cohesion ¢ set to c(Sy), to enable a direct control of undrained shear strength. In that case note

that the model does not automatically include the increase of shear strength with consolidation.

1.3.3 | Hoek-Brown model

The Hoek-Brown model is an isotropic continuum model particularly meant to model weathered
rock. Hence, the model is not suitable for stratified or jointed rock sections with a significant
anisotropic stiffness or with one or more dominant sliding directions. For such behaviour, the
Jointed Rock model is available.

1.3.4 | Hardening Soil model

Although the Hardening Soil model can be regarded as an advanced soil model, there are a
number of features of real soil behaviour the model does not include. It is a hardening model
that does not account for softening due to soil dilatancy and de-bonding effects. In fact, it is

an isotropic hardening model so that it models neither hysteretic and cyclic loading nor cyclic
mobility. Moreover, the model does not distinguish between large stiffness at small strains and
reduced stiffness at engineering strain levels. The user has to select the stiffness parameters in
accordance with the dominant strain levels in the application. Last but not least, the use of the
Hardening Soil model generally results in longer calculation times, since the material stiffness
matrix is formed and decomposed in each calculation step.
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1.3.5 | Hardening Soil model with small-strain stiffness

As the Hardening Soil model with small-strain stiffness (HSsmall) incorporates the loading
history of the soil and a strain-dependent stiffness, it can, to some extent, be used to model
cyclic loading. However, it does not incorporate a gradual softening during cyclic loading, so

is not suitable for cyclic loading problems in which softening plays a role. In fact, just as in the
Hardening Soil model, softening due to soil dilatancy and debonding effects are not taken into
account. Moreover, the HSsmall does not incorporate the accumulation of irreversible volumetric
straining nor liquefaction behaviour with cyclic loading. The use of the HSsmall will generally
result in calculation times that are even longer than those of the Hardening Soil model.

1.3.6 | Jointed Rock model

The Jointed Rock model is a first order anisotropic model that includes a limited number of
features that rock behaviour shows in reality. Plasticity can only occur in a maximum of three
shear directions (shear planes). Each plane has its own shear strength parameters ¢; and c; and
tensile strengtht;. Hence, the maximum shear stress is linearly dependent on the normal stress,
and not curved as in reality. The intact rock is considered to behave fully elastic with constant
stiffness properties E and v. Reduced elastic properties may be defined for the stratification
direction. Note that failure is limited to the predefined shear plane directions. It is possible that
realistic potential failure mechanisms are not captured by the model because of the elastic
behaviour in any other direction than the three shear planes.

1.3.7 | Modified Cam-Clay model

The same limitations (including those in the Soft Soil Creep model) hold in the Modified Cam-
Clay model. Moreover, the Modified Cam-Clay model may allow for unrealistically high shear
stresses. This is particularly the case for overconsolidated stress states where the stress path
crosses the critical state line. Furthermore, the Modified Cam-Clay model may give softening
behaviour for such stress paths. Without special regularization techniques, softening behaviour
may lead to mesh dependency and convergence problems of iterative procedures. Moreover,
the Modified Cam-Clay model cannot be used in combination with Safety analysis by means of
phi-c reduction.

1.3.8 | NGI-ADP model

The NGI-ADP model is an undrained shear strength model particularly meant to model undrained
clays and silts. It can be used in a drained or effective stress analysis, but note that the shear
strength is not automatically updated with changes of effective stresses. Also note that the NGI-
ADP model does not include a tension cut-off.

1.3.9 | Soft Soil model-[ADV]

The same limitations (including the ones for the Soft Soil Creep model) hold in the Soft

Soil model. The utilization of the Soft Soil model should be limited to the situations that are
dominated by compression. It is not recommended for use in excavation problems, since the
model hardly supercedes the Mohr-Coulomb model in unloading problems.

1.3.10 ' Soft Soil Creep model-[ADV]

All above limitations also hold true for the Soft Soil Creep model. In addition this model tends
to over-predict the range of elastic soil behaviour. This is especially the case for excavation
problems, including tunnelling. Care must also be taken with the generation of initial stresses
for normally consolidated soils. Although it would seem logical to use OCR = 1.0 for normally
consolidated soils, such use would generally lead to an over-prediction of deformations in
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problems where the stress level is dominated by the initial self-weight stresses. Therefore, for
such problems it is recommended to use a slightly increased OCR-value to generate the initial
stress state. In fact, in reality most soils tend to show a slightly increased pre-consolidation
stress in comparison with the initial effective stress. Before starting an analysis with external
loading it is suggested to perform a single calculation phase with a short time interval and
without loading to verify the surface settlement rate based on common practice.

1.3.111 UDCAM-S model-[ADV]

The UDCAM-S model is an undrained shear strength model particularly meant to model
undrained clays and silts under design storms. It can be used in a drained or effective stress
analysis, but note that the shear strength is not automatically updated with changes of effective
stress. Also note that the NGI-ADP model does not include a tension cut-off.

1.3.12| Concrete model-[ADV]

The Concrete model is an elastoplastic time-dependent model particularly meant to model
shotcrete or concrete structures. The design approach is separately implemented in the model
through two safety factor parameters in order to avoid inconsistency between the different
aspects computed by the Concrete model. The user should be careful in dynamics analysis
because of the time interval difference between dynamic input and shotcrete hardening. The
model is not suitable for failure involving low fracture energy.

1.3.13 ! Interfaces

Interface elements are generally modelled by means of the bi-linear Mohr-Coulomb model.
When a more advanced model is used for the corresponding cluster material data set, the
interface element will only pick up the relevant data (c, ¢, Y, E, v) for the Mohr-Coulomb model,
as described in the Reference Manual. In such cases the interface stiffness is set equal to the
elastic soil stiffness. Hence, E = E,,where E,, is stress level dependent, following a power law
with E, proportional to m. For the Soft Soil model, Soft Soil Creep model and Modified Cam-
Clay model the power m is equal to 1and E,; is largely determined by the swelling constant k*.

1.3.14 | Undrained behaviour

In general, care must be taken in undrained conditions, since the effective stress path that

is followed in any of the models may deviate significantly from reality. Although PLAXIS has
options to deal with undrained behaviour in an effective stress analysis, the use of undrained
shear strength (c, or Su) may be preferred over the use of effective strength properties (¢'

and c¢') in such cases. Please note that direct input on undrained shear strength does not
automatically include the increase of shear strength with consolidation. If, for any reason,

the user decides to use effective strength properties in undrained conditions, it is strongly
recommended to check the resulting mobilised shear strength using the corresponding option in
the PLAXIS Output program.
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Preliminaries on material modelling

A material model is described by a set of mathematical equations that give a relationship
between stress and strain. Material models are often expressed in a form in which infinitesimal
increments of stress (or 'stress rates') are related to infinitesimal increments of strain (or
'strain rates'). All material models implemented in PLAXIS are based on a relationship between
the effective stress rates, &/, and the strain rates, ¢’. In the following section it is described
how stresses and strains are defined in PLAXIS. In subsequent sections the basic stress-
strain relationship is formulated and the influence of pore pressures in undrained materials is
described. Later sections focus on initial conditions for advanced material models.

This Material Models Manual is a general manual for all PLAXIS programs and uses the
coordinate system as used in most programs (Figure 2-1 (p. 15)). Please note that the PLAXIS
3D uses a different coordinate system where z is the vertical axis. Users should realize this
when reading this manual.
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2.1 General definitions of stress

Stress is a tensor which can be represented by a matrix in Cartesian coordinates:
Oz Umy Ozz
o= |0y Oy Oy (2-1)

Ozt Ozy Ozz

A0y
AY _
Quy

Oyza” 0,
Ozy
X L0
P>
z a, |Ox
0z,

Figure 2-1: General three-dimensional coordinate system and sign convention for stresses

In the standard deformation theory, the stress tensor is symmetric such that o, = 0y, 0y, = 0z
and o ,, = Oy,. In this situation, stresses are often written in vector notation, which involves only
six different components:

T
g = (Uzm Oyy0 22 O'myo-yzo-zm) (2—2)

According to Terzaghi's principle, stresses in the soil are divided into effective stresses, ¢’ , and
pore pressures, Lu:

g=d +a, (2-3)

Pore pressures are generally provided by water in the pores. Water is considered not to sustain
any shear stresses. As a result, effective shear stresses are equal to total shear stresses.
Positive normal stress components are considered to represent tension, whereas negative
normal stress components indicate pressure (or compression). Moreover, water is considered
to be fully isotropic, so all pore pressure components are equal. Hence, pore pressure can be
represented by a single value, p,:

0, = (Pw Pw Pw 0 0 0)F (2-4)

Material models for soil and rock are generally expressed as a relationship between infinitesimal
increments of effective stress and infinitesimal increments of strain. In such a relationship,
infinitesimal increments of effective stress are represented by stress rates (with a dot above the
stress symbol):

.1 N N N . . . T

g = (U zx O yy O 2z Ogy Oy Uzac) (2-5)
It is often useful to apply principal stresses rather than Cartesian stress components when
formulating material models. Principal stresses are the stresses in such a coordinate system
direction that all shear stress components are zero. Principal stresses are, in fact, the

eigenvalues of the stress tensor. Principal effective stresses can be determined in the following
way:

det(c —aI)=0 (2-6)
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where I is the identity matrix. This equation gives three solutions for ¢', i.e. the principal
effective stresses (o' 1, o' 5, ¢' 3). In PLAXIS the principal effective stresses are arranged in
algebraic order:

0y <0y <oy (2-7)

Hence, o' ;is the largest compressive principal stress and o' 3 is the smallest compressive
1 3

principal stress. In this manual, models are often presented with reference to the principal stress
space, as indicated in Figure 2.

_g'1 ‘.

-ag'y =o'y =-0'3

_0'2

Figure 2-2: Principal stress space

In addition to principal stresses it is also useful to define invariants of stress, which are stress
measures that are independent of the orientation of the coordinate system. Two useful stress
invariants are:

! 1 !/ / /
b = § (o-zz + Uyy + Uzz) (2_8)
1 2 2 2
= \/5 ((U;w - o-fuy) + (U:Jy - o-fzz) + (U/zz - o-gcx) + 6(0926y + O-Zz + Ugw)) (2_9)
p' = Isotropic effective stress, or mean effective stress.
q = Equivalent shear stress. It has the important property that it reduces to

q = |0} — o3| for triaxial stress states with o', = 0'3.

Principal effective stresses can be written in terms of the invariants:

r s 2osin(6- 2 2-10

o, = —gsin| 0 — —m -
1=P + 34 3 (2-10)
!/ !/ 2 .

oy =p + gqsm <0> (2-11)
, , 2 2

o3 =p + Eqsm 0+ gﬂ' (2-12)

in which @ is referred to as Lode 's angle (a third invariant), which is defined as:

6= Larcsin( 223 213

= —arcsm| — — -
3 e (2-13)

with
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Js = (U;x - p') (Ugly B p') (Ulzz - pl) - (a.;/y - p')azm
o

(2-14)
- (O-gcw - p,) 32/z - (o{zz - pl) Uiy + 20—1‘740-3120-”
2.2 General definitions of strain
Strain is a tensor which can be represented by a matrix with Cartesian coordinates as:
Exx Eacy Exz
E= |y Eyy Ey (2-15)

€z Ezy €22
Strains are the derivatives of the displacement components, i.e. €i; = 3 (a_g + 7)

where i and j are either x, y or z.

According to the small deformation theory, only the sum of complementing Cartesian shear
strain components g; and g result in shear stress. This sum is denoted as the shear strain y.
Hence, instead of gy, €,x, €2, €2y, €2 and &, the shear strain components y,y, y,, and y,, are
used respectively. Under the above conditions, strains are often written in vector notation, which
involves only six different components:

€ = (€ae €4y €22 Yoy Yoz Vz) | (2-16)
0
Ear = By U (2-17)
0
Eyy = a_yuy (2-18)
0
€2z = auz (2-19)
0
Yy = €y + Eyr = 8_yuz + %uy (2—20)
0 0
Vyz = Eys T 8y = poUy By (2-21)
0 0
Yoo = €ze + €z = %uz + Eux (2-22)

Similarly as for stresses, positive normal strain components refer to extension, whereas negative
normal strain components indicate compression.

In the formulation of material models, where infinitesimal increments of strain are considered,
these increments are represented by strain rates (with a dot above the strain symbol). notation

€= (SMC 6?!3/ €22 7zy 7yz 7zm) (2—23)

In analogy to the invariants of stress, it is also useful to define invariants of strain. A strain
invariant that is often used is the volumetric strain, €,, which is defined as the sum of all normal

strain components in a standard calculation according to small deformation theory:
) :Ezm+5yy+€zz:€l+€2+€3 (2-24)

In Updated mesh calculations the volumetric strain is calculated as:
€y = Exz + ‘Syy + €22 + Ezmsyy + €xx€zz + syyazz + Engyyszz (2—25)

The volumetric strain is defined as negative for compaction and as positive for dilatancy.

Another invariant is the deviatoric strain (g4), which is calculated as:

2 1
€¢ = \/_ [(ew — )’ + (g —€22)" + (62 — Em)2] T3 (’Yzzy +7%,. + ’Yzzz> (2-26)

9
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For triaxial conditions i.e. €2 = €3 the deviatoric strain, reduces to:

2
€g= g\sl — &3] (2-27)

where €1 and €3 are the major and minor principal strains components respectively.
Furthermore, when volumetric strains are negligible (&, = 0), then €3 = —1/2¢1,s0 €4 = |e1]

For elastoplastic models, as used in PLAXIS, strains are decomposed into elastic and plastic
components:

e=¢e°+¢€° (2-28)

Throughout this manual, the superscript e will be used to denote elastic strains and the
superscript p will be used to denote plastic strains.

2.3 | Elastic strains

Material models for soil and rock are generally expressed as a relationship between infinitesimal
increments of effective stress ('effective stress rates') and infinitesimal increments of strain
(‘strain rates'). This relationship may be expressed in the form:

& = Mz (2-29)

where M is a material stiffness matrix. Note that in this type of approach, pore-pressures are
explicitly excluded from the stress-strain relationship.

The simplest material model in PLAXIS is based on Hooke's law for isotropic linear elastic
behaviour. This model is available under the name Linear Elastic model, but it is also the basis of
other models. Hooke's law can be given by the equation:

node
o B 9 r-/
a;:w 1-— I/I Z/I ! 0 0 0 Eww
Tyy vooo1-v 0 0 0 .
. vy
U;z B E' v v 1 0 0 0 &
o T @ewaEyy | 0 00 gt 00 e
o o 0o 0o 0o L-v o ||
9
Tuz 0 0 0 0 0 L-u||¥
o/ EZE
_O-ZE_. B T B

(2-30)

The elastic material stiffness matrix is often denoted as D¢. Two parameters are used in this
model, the effective Young's modulus, E', and the effective Poisson's ratio, v'. In the remaining
part of this manual effective parameters are denoted without dash ('), unless a different meaning
is explicitly stated. The symbols E and v are sometimes used in this manual in combination with
the subscript ur to emphasize that the parameter is explicitly meant for unloading and reloading.
A stiffness modulus may also be indicated with the subscript ref to emphasize that it refers to a
particular reference level (y/ef).

According to Hooke's law, the relationship between Young's modulus E and other stiffness
moduli, such as the shear modulus G, the bulk modulus K, and the oedometer modulus Egq, is

given by:
E
G= 2(1+v) a)
E
_ _(-vE
Eoed = Ty ©
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Using these auxiliary stiffness parameters, Hooke's law can be presented in an alternative form

as:
p] [K 0][é
[q‘]_[o 3G] [éq] (2-32)

During the input of material parameters for the Linear Elastic model or the Mohr-Coulomb model
the values of G and E,4 are presented as auxiliary parameters (alternatives), calculated from

Egn. 2-31 (p. 18) . Note that the alternatives are influenced by the input values of E and
v. Entering a particular value for one of the alternatives G or E,.q results in a change of the E

modulus, while v remains the same.

It is possible for the Linear Elastic model and the Mohr-Coulomb model to specify a stiffness that
varies linearly with depth. This can be done by entering a value for E;,. which is the increment of

stiffness per unit of depth, as indicated in Egn. 2-33 (p. 19)

Together with the input of Ej,¢ the input of y,.s becomes relevant. Above y s the stiffness is
equal to Ers. Below the stiffness is given by:

E(y) = Eref + (yref - y)Eznc y < Yref (2—33)

© Note:

The Linear Elastic model is usually inappropriate to model the highly non-linear
behaviour of soil, but it is of interest to simulate structural behaviour, such as thick
concrete walls or plates, for which strength properties are usually very high compared
with those of soil. For these applications, the Linear Elastic model will often be selected
together with Non-porous drainage type in order to exclude pore pressures from these
structural elements.

2.4  Undrained effective stress analysis
(effective stiffness parameters)

In PLAXIS it is possible to specify undrained behaviour in an effective stress analysis using
effective model parameters. This is achieved by identifying the type of material behaviour
(Drainage type) of a soil layer as Undrained A or Undrained B (2.5 Undrained effective stress
analysis with effective strength parameters (Undrained A) (p. 24) and 2.6 Undrained effective
stress analysis with undrained strength parameters (Undrained B) (p. 25)). In this section, it is
explained how PLAXIS deals with this special option.

The presence of pore pressures in a soil body, usually caused by water, contributes to the total
stress level. According to Terzaghi's principle, total stresses vector notation o can be divided

into effective stresses o', active pore pressure pgciive and pore water pressures p,, (see also

Egn. 2-3 (p. 15) ). However, water is supposed not to sustain any shear stress, and therefore
the effective shear stresses are equal to the total shear stresses:

g = gl + MPyctive (2-34)

where,
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S O O = = =

m = and  Pactive = aBiotSeffpw (2-35)
Ogx = U;w + aBiotSeffpw (2-36)
Oyy = U;y + aBiotSeffpw (2-37)
Oy = 0”22 + aBiotSeffpw (2-38)
Ogy = a;y
Oyz = 0y (2-39)
Oze = a'lzz

where
Agiot = Biot's pore pressure coefficient.
Seff = Effective degree of saturation.

Considering incompressible grains, Biot's coefficient ag;jo; is equal to unity (agjot = 1). The
situation of compressible grains or compressible solid material (agj.: < 1) is explained in more
detail at the end of this section.

Note that, similar to the total and the effective stress components, p,, is considered negative for
pressure.

The product ajot Seff Pw is termed 'Active pore pressure’, pgciive in PLAXIS. A further distinction
is made between steady state pore stress, Psteqqy, and excess pore stress, Peycess:

Dw = DPsteady T Pexcess (2-40)

Steady state pore pressures are considered to be input data, i.e. generated on the basis of
phreatic levels or by means of a groundwater flow calculation. Excess pore pressures are
generated during plastic calculations for the case of undrained A or B material behaviour or
during a consolidation analysis. Undrained material behaviour and the corresponding calculation
of excess pore pressures are described below.

Since the time derivative of the steady state component equals zero, it follows:

pw = pezcess (2_41)
Hooke's law can be inverted to obtain:
- e A ./
€z 1 - v 0 0 0 7%=
<€
€y - 1 = 0 0 0 vy
ELl 1 |- v 1 0 0 0 o (2-42)
.e - 1/ ./ -
Yy E' |0 0 0 2+20 0 0 Gy
. !
722 0 0 0 0 2+ 2v 0 fflyz
e 0 0 0 0 0 2+ 20 L
_7zm_ - B _JZZ-

Substituting Eqgn. 2-39 (p. 20) gives:
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[ . € T [ - T

€ 1z C 1 v — 0 0 0 7 |[C%=zz— QABiotPy
éze/y - 1 = 0 0 0 Oy — OpipPu
é; 1 [=2 = 1 0 0 0 G2z — OBiotDw
i / 5 (2-43)
Vay 0 0 0 2+4+2v 0 0 2y
.e ! o/
e, 0 0 0 0 2420 0 ; Gy
52| | 0 0 0 0 0 24 2] I &;Z ]
Considering slightly compressible water, the rate of excess pore pressure is written as:
. Qpiot€ v
p = 2-44
excess nCyy + (abiot _ n)CS ( )
1
Cp=— -
ko (2-45)
C= 2-46
s — ks ( - )

in which K, is the bulk modulus of the water, K is the bulk modulus of the solid material, C, is
the compressibility of the water, C; is the compressibility of the solid material and n is the soil
porosity.

— 60

 14eg

where e is the initial void ratio as specified in the general soil properties.

n (2-47)

The inverted form of Hooke's law may be written in terms of the total stress rates and the
undrained parameters E, and v,

r.e - .
E:a:z B 1 —Vy —Uy O 0 0 T /zz
<€
€y —v, 1 —v, 0 0 0 vy
S U 0 0 0 &, (2-48)
Yoyl Eu| 0O 0 0 2+42v, 0 0 5y
;YZZ 0 0 0 0 2+ 2v, 0 {7; ]
.e 0 0 0 0 0 2+ 2vu,] | .,
_72,7)_ - B _O-ZI_
where:
E, =2G(1 + vy);
_ 3'tapiaB(1-2v)
Vu = 375 B2 (2-49)
B — QBiot

aBiot"l‘n(}I({_;“’aBiat_l)
where B is Skempton's B-parameter.

Hence, the special option for undrained behaviour in PLAXIS (Undrained A or Undrained B)
is such that the effective parameters G and v’ are transformed into undrained parameters E,,

and v, according to Egn. 2-49 (p. 21) . Note that the index u is used to indicate auxiliary
parameters for undrained soil. Hence, E, and v, should not be confused with E,, and v, as used
to denote unloading / reloading.

Fully incompressible behaviour is obtained for v, = 0.5. However, taking v, = 0.5 leads to

singularity of the stiffness matrix. In fact, water is not fully incompressible, but a realistic bulk
modulus for water is very large. In order to avoid numerical problems caused by an extremely
low compressibility, v, is, by default, taken as 0.495, which makes the undrained soil body
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slightly compressible. In order to ensure realistic computational results, the bulk modulus of the
water must be high compared with the bulk modulus of the soil skeleton, i.e. K, >> n K'. This

condition is sufficiently ensured by requiring v' = 0.35.

Consequently, for material behaviour Undrained A or Undrained B, a bulk modulus for water

is automatically added to the stiffness matrix. The bulk modulus of water is obtained in three
ways: automatically from Eqgn. 2-50 (p. 22) (v-undrained definition - Direct), automatically

but by specifying the Skempton's B-parameter (v-undrained definition - Skempton B based) and
manually by directly specifying K, and agjo: (Biot effective stress concept).

e = ety K= MEGY300K" > 30K (Forapi = 1) (2-50)

© Note: In the UBC3D-PLM model, the implicit Poisson's ratio (v') is defined based on the
elastic bulk modulus K and the elastic shear modulus G at the current stress state, v'=
(3K - 2G)/(6K + 2G). For this reason, the value follows the evolution of the stiffnesses
and it is not constant.

Hence, K, / nis larger than 30K', at least for v's 0.35 and agjo: = 1. The bulk stiffness of water
Ky, calculated in this way, is a numerical value related to the soil stiffness. It is lower than or

equal to the real bulk stiffness of pure water, K, 0 (2-’/06 kN/m? ). In retrospect it is worth
mentioning here a review about the Skempton B-parameter.

2.41 Skempton B-parameter

When the Drainage type is set to Undrained A or Undrained B, PLAXIS automatically assumes
an implicit undrained bulk modulus, K, for the soil as a whole (soil skeleton + water) and

distinguishes between total stress rates, effective stress rates and rates of excess pore

pressure:
Total stress : p= Kué, (2-51)
. . Qpiot€ v
E : = Bp = _
TCESS POTEPreSSUTE : P opeess D G+ (g —)Cn (2-52)
Ef fective stress : p'= (1—apiwB)p = K'¢, (2-53)

Note that for Undrained A or Undrained B effective stiffness parameters should be entered in
the material data set, i.e. E' and v' and not E, and v,,, or the respective stiffness parameters in
advanced models; the latter should be done for Undrained C behaviour in a total stress analysis
(2.7 Undrained total stress analysis with undrained parameters (Undrained C) (p. 26)). The
undrained bulk modulus is automatically calculated by PLAXIS using Hooke's law of elasticity:

!
M where G = _B (2-54)
3(1 —2v,) 2(1+9)
When using the v-undrained option with suboption Direct, by default v, = 0.495 (but can be
changed) and agjot = 1, whereas when using the v-undrained option with suboption Skempton
B based with input of Skempton's B-parameter or the option Biot effective stress concept, v, is
calculated as:

3v' + apixB(1 — 2v')
Uy =
3— OéBl'otB(l — 2’0’)

K, =

(2-55)

If the soil is only partially saturated, the pores contain both air and water and the equivalent
bulk modulus of the pore fluid K,, "™ is expected to be much smaller compared to that of pure

2 Preliminaries on material modelling | 22



water, in the case of fully saturated soil K,,. PLAXIS assumes a constant gas pressure i.e. air is
always drained, the drainage type of soil only relates to the drainage type of liquid water. Excess
pore pressure change will therefore depend on the bulk modulus of liquid water and the surface
tension (capillary effect). This assumption allows to establish the following rigorous relationship
for the unsaturated bulk modulus of the pore fluid:

Ky

K, (95, (2-56)
1+ 5 <_W)

unsat __
K, =

where is the derivative of saturation w.r.t. pore water pressure (suction), i.e. the slope of water
retention curve

The value of Skempton's B-parameter is calculated from the ratio of the bulk stiffnesses of the
soil skeleton and the pore fluid, as already defined in Eqn. 2-50 (p. 22) :

Q& Biot

B—
QBiot + n({({—u + aBiot — 1)

(2-57)

The rate of excess pore pressure is calculated from the (small) volumetric strain rate, according
to:

. O Biot€ v
Pezcess = 2-58
ncw + (aBiot - n)Cs ( )

The types of elements used in PLAXIS are sufficiently adequate to avoid mesh locking effects for
nearly incompressible materials.

This special option to model undrained material behaviour on the basis of effective model
parameters is available for most material models in PLAXIS. This enables undrained calculations
to be executed with effective stiffness parameters, with explicit distinction between effective
stresses and (excess) pore pressures. However, shear induced (excess) pore pressure may not
be sufficiently included.

Such an analysis requires effective soil parameters and is therefore highly convenient when
such parameters are available. For soft soil projects, accurate data on effective parameters may
not always be available. Instead, in situ tests and laboratory tests may have been performed to
obtain undrained soil parameters. In such situations measured undrained Young's moduli can be
easily converted into effective Young's moduli based on Hooke's law:

2(1+4")
3

For advanced models there is no such direct conversion possible. In that case it is
recommended to estimate the required effective stiffness parameter from the measured
undrained stiffness parameter, then perform a simple undrained test to check the resulting
undrained stiffness and adapt the effective stiffness if needed. The Soil test facility (Reference
Manual) may be used as a convenient tool to perform such test.

E' = E, (2-59)

2.4.2 | Biot pore pressure coefficient agj,: [ULT]

In general, for geotechnical applications, the compressibility of the soil skeleton is much higher
than the compressibility of the individual grains, so deformations of the grains themselves can
be ignored. However, in the case of very deep soil layers at very high pressures, the stiffness of
the soil or rock matrix comes close to the stiffness of the solid material of which the soil grains
or the rock is composed of, and, therefore, the compressibility of the solid material cannot be
ignored. This has consequences for the division of total stress into effective stress and pore
pressure. Considering compressible solid material, Terzaghi's effective stress definition changes
into:
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/

0 = T — QiotSefMPy (2-60)

Where oo is Biot's pore pressure coefficient, Seg is the effective degree of saturation, M is a
vector with unity values (1) for the normal components and 0-values for the shear components,
and p,, is the pore water pressure. The alpha coefficient is defined as:

KI

K
Where K' is the effective bulk modulus of the soil matrix and Kj is the bulk modulus of the solid
material. Indeed, for incompressible solid material (Ks = o0 ) Terzaghi's original stress definition

is retained. A lower value of ag;,; implies that for a given value of total stress and pore water

pressure, the resulting effective stress is higher than when considering incompressible solid
material (agjor =1).

(2-61)

Qpiot = 1 —

In the case of undrained soil behaviour (Undrained A or B in PLAXIS 2D), Biot's pore pressure
coefficient also affects the undrained Poisson's ratio v, that is automatically calculated by
PLAXIS 2D based on a manual input of K, parameter (see Eq. Eqn. 2-49 (p. 21) ).

The default value of Biot's pore pressure coefficient is 1.0 (v-undrained definition option), but
users may change this value in the range of [0.001, 1.0] for the Biot effective stress concept
option.

2.5 |Undrained effective stress analysis with
effective strength parameters (Undrained A)

In principle, undrained effective stress analysis as described in 2.4 Undrained effective stress
analysis (effective stiffness parameters) (p. 19) can be used in combination with effective
strength parameters ¢' and c¢' to model the material's undrained shear strength (Undrained A).
In this case, the development of the pore pressure plays a crucial role in providing the right
effective stress path that leads to failure at a realistic value of undrained shear strength (c, or
sy). However, note that most soil models are not capable of providing the right effective stress
path in undrained loading. As a result, they will produce the wrong undrained shear strength if
the material strength has been specified on the basis of effective strength parameters. Another
problem is that for undrained materials effective strength parameters are usually not available
from soil investigation data. In order to overcome these problems, some models allow for a
direct input of undrained shear strength. This approach is described in 2.6 Undrained effective
stress analysis with undrained strength parameters (Undrained B) (p. 25).

If the user wants to model the material strength of undrained materials using the effective
strength parameters ¢' and c', this can be done in PLAXIS in the same way as for drained
materials. However, in this case the Drainage type must be set to Undrained A. As a result,
PLAXIS will automatically add the stiffness of water to the stiffness matrix (see 2.4 Undrained
effective stress analysis (effective stiffness parameters) (p. 19)) in order to distinguish

between effective stresses and (excess) pore pressures (= effective stress analysis). The
advantage of using effective strength parameters in undrained loading conditions is that after
consolidation a qualitatively increased shear strength is obtained, although this increased shear
strength could also be quantitatively wrong, for the same reason as explained before.
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Figure 2-3: lllustration of stress paths; reality vs Mohr-Coulomb model

2.4 Undrained effective stress analysis (effective stiffness parameters) (p. 19) illustrates an
example using the Mohr-Coulomb model. When the Drainage type is set to Undrained A, the
model will follow an effective stress path where the mean effective stress, p', remains constant
all the way up to failure (1). It is known that especially soft soils, like normally consolidated clays
and peat, will follow an effective stress path in undrained loading where p' reduces significantly
as a result of shear induced pore pressure (2). As a result, the maximum deviatoric stress that
can be reached in the model is over-estimated in the Mohr-Coulomb model. In other words, the
mobilised shear strength in the model supersedes the available undrained shear strength.

If, at some stress state, the soil is consolidated, the mean effective stress will increase (3). Upon
further undrained loading with the Mohr-Coulomb model, the observed shear strength will be
increased (4) compared to the previous shear strength, but this increased shear strength may
again be unrealistic, especially for soft soils.

On the other hand, advanced models do include, to some extent, the reduction of mean effective
stress in undrained loading, but even when using advanced models it is generally advised to
check the mobilised shear strength in the Output program against the available (undrained)
shear strength when this approach is followed.

Note that whenever the Drainage type parameter is set to Undrained A, effective values must
be entered for the stiffness parameters (Young's modulus E' and Poisson ratio v' in case of the
Mohr-Coulomb model or the respective stiffness parameters in the advanced models).

Care must be taken when using Undrained A together with a non-zero dilatancy angle . The

use of a positive dilatancy angle may lead to unrealistically large tensile pore stresses and, as

a result, an unrealistically large shear strength. The use of a negative dilatancy angle may lead
to unrealistically high pore pressure and unrealistic liquefaction type of behaviour. Hence, for

Undrained A it is recommended to use = 0.

2.6 | Undrained effective stress analysis with
undrained strength parameters (Undrained
B)

For undrained soil layers with a known undrained shear strength profile, PLAXIS offers for some
models the possibility of an undrained effective stress analysis, as described in 2.4 Undrained
effective stress analysis (effective stiffness parameters) (p. 19), with direct input of the
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undrained shear strength, i.e. setting the friction angle to zero and the cohesion equal to the
undrained shear strength (¢ = ¢, = 0° ¢ = s;) (Drainage type = Undrained B). Also in this case,
distinction is made between pore pressures and effective stresses. Although the pore pressures
and effective stress path may not be fully correct, the resulting undrained shear strength is not
affected, since it is directly specified as an input parameter.

The option to perform an undrained effective stress analysis with undrained strength properties
is only available for the Mohr-Coulomb model, the Hardening Soil model, the Hardening Soil
model with small-strain stiffness and the NGI-ADP model. Since most soils show an increasing
shear strength with depth, it is possible to specify the increase per unit of depth in PLAXIS in the
Stress dependency blocks on the Mechanical tabsheet of the Soil window.

Note that if the Hardening Soil model or the Hardening Soil model with small-strain stiffness

is used with ¢ = 0°, the stiffness moduli in the model are no longer stress-dependent and the
model exhibits no compression hardening, although the model retains its separate unloading-
reloading modulus and shear hardening. Also note that a direct input of undrained shear strength
does not automatically give the increase of shear strength with consolidation.

Further note that whenever the Drainage type parameter is set to Undrained B, effective values
must be entered for the stiffness parameters (Young's modulus E' and Poisson ratio v' in case of
the Mohr-Coulomb model or the respective stiffness parameters in the advanced models).

2.7 | Undrained total stress analysis with
undrained parameters (Undrained C)

If, for any reason, it is desired not to use the Undrained A or Undrained B options in PLAXIS to
perform an undrained effective stress analysis, one may simulate undrained behaviour using

a conventional total stress analysis with all parameters specified as undrained. In that case,
stiffness is modelled using an undrained Young's modulus E;, and an undrained Poisson ratio v,
and strength is modelled using an undrained shear strength s, and ¢ = ¢, = 0°. Typically, for the
undrained Poisson ratio a value close to 0.5 is selected (between 0.495 and 0.499). A value of
0.5 exactly is not possible, since this would lead to singularity of the stiffness matrix.

In PLAXIS it is possible to perform a total stress analysis with undrained parameters if the Mohr-
Coulomb model or the NGI-ADP model is used. In this case, one should select Undrained C as
the Drainage type. The disadvantage of the undrained total stress analysis is that no distinction
is made between effective stresses and pore pressures. Hence, all output referring to effective
stresses should now be interpreted as total stresses and all pore pressures are equal to zero.

Note that a direct input of undrained shear strength does not automatically give the increase
of shear strength with consolidation. In fact, it does not make sense to perform a consolidation
analysis since there are no pore pressures to consolidate. Also note that the Ky-value to
generate initial stresses refers to total stresses rather than effective stresses in this case. This
type of approach is not possible for most advanced models.

2.7.11 Overview of models and allowable drainage types

Material model Drainage type
Linear Elastic model Drained, Undrained A, Undrained C, Non-porous
Mohr-Coulomb model Drained, Undrained A, Undrained B, Undrained C, Non-porous
Hardening Soil model Drained, Undrained A, Undrained B
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Material model

Drainage type

Hardening Soil
model with small-
strain stiffness

Drained, Undrained A, Undrained B

UBC3D-PLM model

Drained, Undrained A

Soft Soil model

Drained, Undrained A

Soft Soil Creep model

Drained, Undrained A

Jointed Rock model

Drained, Non-porous

Modified Cam- Drained, Undrained A
Clay model
NGI-ADP model Drained, Undrained C

UDCAM-S model

Undrained C

Hoek-Brown model

Drained, Non-porous

Sekiguchi-Ohta model

Drained, Undrained A

Concrete model

Drained, Non-porous

User-defined Drained, Undrained A, Non-porous
soil models

2.8 | The initial pre-consolidation stress in
advanced models

When using advanced models in PLAXIS an initial pre-consolidation stress has to be determined.
In the engineering practice it is common to use a vertical pre-consolidation stress, op, but

PLAXIS needs an equivalent isotropic pre-consolidation stress, ppeq to determine the initial
position of a cap-type yield surface. If a material is overconsolidated, information is required
about the overconsolidation Ratio (OCR), i.e. the ratio of the greatest effective vertical stress

previously reached, o, (see Figure 2-4 (p. 28)), and the in-situ effective vertical stress, o'y, 0
(note that in PLAXIS 3D the vertical (effective) stress is 0'022).

Op
OCR = — (2-62)

10
Oy

The two ways of specifying the vertical pre-consolidation stress are illustrated in Figure 2-4 (p.
28).
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Figure 2-4: lllustration of vertical pre-consolidation
stress in relation to the in-situ vertical stress

It is also possible to specify the initial stress state using the Pre-Overburden Pressure (POP)
as an alternative to prescribing the overconsolidation ratio. The Pre-Overburden Pressure is
defined by:

POP = |0}, — o)) (2-63)

The pre-consolidation stress o, is used to compute the equivalent pre-consolidation pressure
Pp €9 which determines the initial position of a cap-type yield surface in the advanced soil
models. The calculation of p, ®9is based on the principal stress history (0'1max: 0'2, 0'3). The

actual determination of ppeq depends on the constitutive model being used. The principal stress
history is initialised in the Initial phase (KO-procedure or Gravity loading) based on the Cartesian
effective stress components and the pre-overburden pressure (POP) or overconsolidation ratio
(OCR) defined in the boreholes or data set. From this, Cartesian pre-consolidation stress levels
are calculated based on the following equations:

agm = K “OCR o—;y

o' =OCR a;y

zz,Cc

o... = Ky OCRo),

2z,C

(2-64)

Ozyc = Ozxy

K¢ = Ky — value associated with normally consolidated states of stress.

© Note:
* K{*is a model parameter in advanced constitutive models and estimated in simple
models (Ko "= 1-sine).

* Models that do not have ¢ as input parameter use K§°=0.5 (¢=30°).

For the Modified Cam-Clay model, K¢ is automatically determined based on the parameter

M as entered by the user. The exact relationship between M and K, " can be formulated as
(Bringreve, 1994):

(1- Kpe)? (1 - K3°) (1 - 20,,) (/K" — 1)
(1+2K7)°  (142K7°) (1= 200,) X" /k — (1 - K7°) (1 + vur)

For more details see 8 Modified Cam-Clay model (p. 93).

M =3 (2-65)
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The Cartesian stress components (0'yy ¢, 0'yy,c: 0'zz,¢c: O'xy,c) are transformed to principal stress
components (0'1 max, 0'2, 0'3) and the maximum major principal stress, 0'; max, is kept as a
general state parameter which is available for succeeding phases. In subsequent phases, 0'1 max
is updated if the major principal stress is larger than the current one.

If, in later calculation phases, the soil behaviour is changed to an(other) advanced material

model, the equivalent pre-consolidation pressure ppeq is initialised according to the current
(updated) principal stress history (6'1max, 0'2, 0'3).

The stress state at pre-consolidation stress level is expressed in (p, q):
1
p=s <1 i zzcgw) o, and q=(1- K)o, (2-66)

The equivalent isotropic pre-consolidation stress is calculated depending on the model used.

Note that OCR and POP are only taken into account in the Kyp-procedure (initial calculation

phase). Gravity loading does not consider OCR or POP, and always gives a normally-
consolidated stress state. If an advanced soil model (involving pre-consolidation stress) is
activated in a later calculation phase, i.e.

® The corresponding soil cluster is activated for the first time, or

* The material data of a soil is changed from a 'simple'soil model without pre-consolidation
stress to an 'advanced'soil model with the pre-consolidation stress as a state parameter

then the stress state at the beginning of that phase is assumed to be normally-consolidated,

i.e. the pre-consolidation stress is initiated in accordance with the current stress state. If, in
such a case, an overconsolidated stress state is to be modelled, the overconsolidation has to be
simulated by applying and removing an overburden load.

2.9 | On the initial stresses

In overconsolidated soils the coefficient of lateral earth pressure for the initial stress state

is larger than for normally consolidated soils. This effect is automatically taken into account

for advanced soil models when generating the initial stresses using the Ko-procedure. The
procedure that is followed here is described below. The procedure is described for the lateral
stress in x-direction (o'xx based on Ky ), but a similar procedure is followed for the lateral stress
in z-direction (o', based on Kj ;).
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Figure 2-5: Overconsolidated stress state obtained
from primary loading and subsequent unloading

Consider a one-dimensional compression test, preloaded to ¢' ,, = 0, and subsequently
unloaded to o'y, = o'yyo. During unloading the sample behaves elastically and the incremental
stress ratio is, according to Hooke's law, given by (see Figure 2-5 (p. 30)):

Ao’

nc 10 ne 0 _ /0
e  Ki‘op—op,  K{°OCRo,, —oy,

UU/!‘

Aoy, op—of,  (OCR—1)08  1-vu

(2-67)

where K, " is the stress ratio in the normally consolidated state. Hence, the default stress ratio
of the overconsolidated soil sample is given by:

a0 v
Ko, = —5- = K§°OCR — ——— | OCR — 1 (2-68)
o 1

7 yy = Uur

When using POP as an alternative way to define overconsolidation, the default initial horizontal
stress is defined by:

o = Koy — 5 i“v POP (2-69)
The use of a small Poisson's ratio will lead to a relatively large ratio of lateral stress and vertical
stress, as generally observed in overconsolidated soils. Note that Eqn. 2-68 (p. 30) and

Eqgn. 2-69 (p. 30) are only valid in the elastic domain, because the formulas are derived

from Hooke's law of elasticity. If a soil sample is unloaded by a large amount, resulting in a

high degree of overconsolidation, the stress ratio will be limited by the Mohr-Coulomb failure
condition.

Note that the above initial stress ratio's are only suggested (default) values, and may
be overruled by the user if more precise data are available or if other values seem more
appropriate.
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Linear Elastic Perfectly Plastic Model
(Mohr-Coulomb Model)

Soils behave rather non-linear when subjected to changes of stress or strain. In reality, the
stiffness of soil depends at least on the stress level, the stress path and the strain level. Some
such features are included in the advanced soil models in PLAXIS. The Mohr-Coulomb model,
however, is a simple and well-known linear elastic perfectly plastic model, which can be used
as a first approximation of soil behaviour. The linear elastic part of the Mohr-Coulomb model is
based on Hooke's law of isotropic elasticity (3.1 Linear Elastic Perfectly - Plastic behaviour (p.
31)). The perfectly plastic part is based on the Mohr-Coulomb failure criterion, formulated in

a non-associated plasticity framework.

Plasticity involves the development of irreversible strains. In order to evaluate whether or not
plasticity occurs in a calculation, a yield function, f, is introduced as a function of stress and
strain. Plastic yielding is related with the condition f = 0. This condition can often be presented
as a surface in principal stress space. A perfectly-plastic model is a constitutive model with

a fixed yield surface, i.e. a yield surface that is fully defined by model parameters and not
affected by (plastic) straining. For stress states represented by points within the yield surface,
the behaviour is purely elastic and all strains are reversible.

3.1/ Linear Elastic Perfectly - Plastic
behaviour

The basic principle of elastoplasticity is that strains and strain rates are decomposed into an
elastic part and a plastic part:



e=g°+¢° E=¢°+¢° (3-1)
Hooke's law is used to relate the stress rates to the elastic strain rates. Substitution of Eqgn. 3-1
(p. 32) into Hooke's law Eqn. 2-30 (p. 18) leads to:

é'l — De §~€ _ De(g'_ §'p) (3_2)

According to the classical theory of plasticity , plastic strain rates are proportional to the
derivative of the yield function with respect to the stresses. This means that the plastic strain
rates can be represented as vectors perpendicular to the yield surface. This classical form

of the theory is referred to as associated plasticity. However, for Mohr-Coulomb type yield
functions, the theory of associated plasticity overestimates dilatancy. Therefore, in addition to
the yield function, a plastic potential function g is introduced. The case g # f is denoted as non-
associated plasticity. In general, the plastic strain rates are written as:

0g
. p — A
& B0’

in which A is the plastic multiplier. For purely elastic behaviour A is zero, whereas in the case of
plastic behaviour A is positive:

(3-3)

A=0 for: f<0 or: %L;Deg' <0 (Elasticity) (3-4)
A>0 for: f=0 and: %Deg >0 (Plasticity) (3-5)
A
)
g | |
< . L4 > £

Figure 3-1: Basic idea of an elastic perfectly plastic model

These equations may be used to obtain the following relationship between the effective stress
rates and strain rates for elastic perfectly-plastic behaviour (Smith & Griffiths [1982]; Vermeer &

Borst [1984]):

- E,E eagafT ez
& = (D dD B 8g,D é (3-6)
where:
_ (91T e 99
1= (5P ) o

The parameter a is used as a switch. If the material behaviour is elastic, as defined by Egn. 3-4
(p. 32) , the value of a is equal to zero, whilst for plasticity, as defined by Egn. 3-5 (p. 32)
, the value of a is equal to unity.

The above theory of plasticity is restricted to smooth yield surfaces and does not cover a multi
surface yield contour as present in the full Mohr-Coulomb model. For such a yield surface the

theory of plasticity has been extended by Koiter (1960) and others to account for flow vertices
involving two or more plastic potential functions:
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Similarly, several quasi independent yield functions (f;, f,, ...) are used to determine the

magnitude of the multipliers (A4, A5, ...)

3.2  Formulation of the Mohr-Coulomb model

The Mohr-Coulomb yield condition is an extension of Coulomb's friction law to general states of
stress. In fact, this condition ensures that Coulomb's friction law is obeyed in any plane within a

material element.

The full Mohr-Coulomb yield condition consists of six yield functions when formulated in terms

of principal stresses (see for instance Smith & Griffiths, 1982):

fla=%(0"2—0'3) + 5 (0’2 + 0'3) sin (¢) — ccos (¢) <0 a)

fiv =% ('3 —0's) + 5 ('3 + 0'2) sin (¢) — ccos (¢) <0 b)

fra=5(0's = 0'1) + 3(0's + 0'1) sin (¢) — ceos (¢) <0 ¢) (3-9)
fao = 5(0'1—0's) + 5 (0'1+ 0'3) sin (¢) —ccos (¢) <0 d)

fin =3 (0= o'2) + 3(1 - o) sin(9) —ccos($) <O o)

fa = %(0'2 - 0’1) + %(‘7l2 + ‘711) sin (¢) — ccos (¢) < 0 f)

The two plastic model parameters appearing in the yield functions are the well-known friction
angle ¢ and the cohesion c. The condition f; = 0 for all yield functions together (where f;is used

to denote each individual yield function) represents a fixed hexagonal cone in principal stress
space as shown in Figure 3-2 (p. 33).
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Figure 3-2: The Mohr-Coulomb yield surface in principal stress space (c = 0)

In addition to the yield functions, six plastic potential functions are defined for the Mohr-

Coulomb model:
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G = 3 (2= 5) + H(oa + o) @) <0 a)
g = 5 (0’3 = 0"2) + 5(0's +0'2)sin(y) <0 b)
g = 1(0'a o)+ Ho'a 4 ) sin() 0 o)
7 (3= 0'1) 4 , (3-10)
g2b:7(0'1—0'3)4-7(0'14‘03)5111(1/’)SO d)
g = H(o'— o's) + 3 (1 + o) s () 0 o)
gn=3(0'2— ")+ 3(0'2+0"1)sin() <0 f)

The plastic potential functions contain a third plasticity parameter, the dilatancy angle . This
parameter is required to model positive plastic volumetric strain increments (dilatancy) as
actually observed for dense soils. A discussion of all of the model parameters used in the Mohr-
Coulomb model is given in the next section.

When implementing the Mohr-Coulomb model for general stress states, special treatment is
required for the intersection of two yield surfaces. Some programs use a smooth transition
from one yield surface to another, i.e. the rounding-off of the corners (see for example
Smith & Griffiths, 1982). In PLAXIS, however, the exact form of the full Mohr-Coulomb model
is implemented, using a sharp transition from one yield surface to another. For a detailed
description of the corner treatment the reader is referred to the literature (Koiter, 1960; van
Langen & Vermeer, 1990).

For ¢ > 0, the standard Mohr-Coulomb criterion allows for tension. In fact, allowable tensile
stresses increase with cohesion. In reality, soil can sustain none or only very small tensile
stresses. This behaviour can be included in a PLAXIS analysis by specifying a tension cut-off.
In this case, Mohr circles with positive principal stresses are not allowed. The tension cut-off
introduces three additional yield functions, defined as:

fi=0d'1—-0:<0 a)
fs=02—0:<0 b) (3-1)
fo=0'3—0,<0 c)

When this tension cut-off procedure is used, the allowable tensile stress, oy, is, by default, taken

equal to zero, but this value can be changed by the user. For these three yield functions an
associated flow rule is adopted.

For stress states within the yield surface, the behaviour is elastic and obeys Hooke's law for
isotropic linear elasticity, as discussed in . Hence, besides the plasticity parameters c, ¢, and y,
input is required on the elastic Young's modulus E and Poisson's ratio v. The model described
here is officially called the linear elastic perfectly plastic model with Mohr-Coulomb failure
criterion. For simplicity, this model is called the Mohr-Coulomb model in PLAXIS.

3.3 Parameters of the Mohr-Coulomb model

The linear elastic perfectly-plastic Mohr-Coulomb model requires a total of five parameters,
2 stiffness parameters and 3 strength parameters, which are generally familiar to most
geotechnical engineers and which can be obtained from basic tests on soil samples. The
stiffness parameters with their standard units are:

Eref Young's modulus [kN/m?]

v Poisson's ratio [-]

Instead of using the Young's modulus as a stiffness parameter, alternative stiffness parameters
can be entered. These parameters with their standard units are listed below:
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G Shear modulus [kN/m2]

Eoeqd Oedometer modulus [kN/m®]

The strength parameters of the Mohr-Coulomb model are:

c Cohesion [kN/mZ]
10) Friction angle [°]
] Dilatancy angle [°]
O; Tension cut-off and tensile strength [kN/m?]

Parameters can either be effective parameters (indicated by a prime sign (')) or undrained
parameters (indicated by a subscript u), depending on the selected drainage type.

[ULT] In the case of dynamic applications, alternative and/or additional parameters may be used
to define stiffness based on wave velocities. These parameters are listed below:

Vp Compression wave velocity [m/s]

Vs Shear wave velocity [m/s]

3.3.1 Young's modulus (E)

PLAXIS uses the Young's modulus as the basic stiffness modulus in the elastic model and the
Mohr-Coulomb model, but some alternative stiffness moduli are displayed as well. A stiffness
modulus has the dimension of stress. The values of the stiffness parameter adopted in a
calculation require special attention as many geomaterials show a non-linear behaviour from the
very beginning of loading. In triaxial testing of soil samples the initial slope of the stress-strain
curve (tangent modulus) is usually indicated as Ep and the secant modulus at 50% strength

is denoted as Esp (see Figure 3-3 (p. 36)). For materials with a large linear elastic range

it is realistic to use Ep, but for loading of soils one generally uses E5o. Considering unloading
problems, as in the case of tunnelling and excavations, one needs an unload-reload modulus
(Eyy) instead of Esp.

For sails, both the unloading modulus, E,;, and the first loading modulus, E5g, tend to increase
with the confining pressure. Hence, deep soil layers tend to have greater stiffness than shallow
layers. Moreover, the observed stiffness depends on the stress path that is followed. The
stiffness is much higher for unloading and reloading than for primary loading. Also, the observed
soil stiffness in terms of a Young's modulus may be lower for (drained) compression than for
shearing. Hence, when using a constant stiffness modulus to represent soil behaviour one
should choose a value that is consistent with the stress level and the stress path development.
Note that some stress-dependency of soil behaviour is taken into account in the advanced
models in PLAXIS which are described in subsequent chapters. For the Mohr-Coulomb model,
PLAXIS offers a special option for the input of a stiffness increasing with depth (see 3.4 Depth-
dependency (p. 40)). Note that for material data sets where the drainage type is set to
Undrained (A) or Undrained (B), Young's modulus has the meaning of an effective Young's
modulus, whilst PLAXIS automatically takes care of the incompressibility (2.4 Undrained
effective stress analysis (effective stiffness parameters) (p. 19)).
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Figure 3-3: Definition of Ey, E5g and E,, for drained triaxial test results

3.3.2 Poisson's ratio (v)

Standard drained triaxial tests may yield a significant rate of volume decrease at the very
beginning of axial loading and, consequently, a low initial value of Poisson's ratio (vy). For some
cases, such as particular unloading problems, it may be realistic to use such a low initial value,
but in general when using the Mohr-Coulomb model the use of a higher value is recommended.

The selection of a Poisson's ratio is particularly simple when the elastic model or Mohr-Coulomb
model is used for gravity loading under conditions of one-dimensional compression. For this
type of loading PLAXIS should give realistic ratios of Ko = o'y, / 0’y .

As both models will give the well-known ratio of o'y, / o'y, = v/ (1 - v) for one-dimensional
compression it is easy to select a Poisson's ratio that gives a realistic value of Ky. Hence, v is
evaluated by matching Kp. In many cases one will obtain v values in the range between 0.3 and
0.4. In general, such values can also be used for loading conditions other than one-dimensional
compression. Please note that in this way it is not possible to create Ky values larger than 1, as
may be observed in highly overconsolidated stress states. For unloading conditions, however, it
is more appropriate to use values in the range between 0.15 and 0.25.

Further note that for material data sets where the drainage type is set to Undrained (A)

or Undrained (B), Poisson's ratio has the meaning of an effective Poisson's ratio, whilst
PLAXIS automatically takes care of the incompressibility (2.4 Undrained effective stress
analysis (effective stiffness parameters) (p. 19)). To ensure that the soil skeleton is much more
compressible than the pore water, the effective Poisson's ratio should be smaller than 0.35 for
Undrained (A) or Undrained (B) materials.

3.3.3 ! Shear modulus (G)

The shear modulus, G, has the dimension of stress. According to Hooke's law, the relationship
between Young's modulus E and the shear modulus is given by (see Eqn. 2-31 (p. 18) a)):
E
G = — —
2(1+4v) (3-12)
Entering a particular value for one of the alternatives G or E 4 results in a change of the E
modulus whilst v remains the same.
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3.3.4/ Oedometer modulus (E,eq)

The oedometer modulus, E,eq, Or constrained modulus, has the dimension of stress. According

to Hooke's law, the relationship between Young's modulus E and the oedometer modulus is
given by (see Egn. 2-31 (p. 18) c)).

(1-v)E
(1-2v)(1+v)

Entering a particular value for one of the alternatives G or E,eq4 results in a change of the E
modulus whilst v remains the same.

Eoed =

(3-13)

3.3.5/ Compression wave velocity V, [ULT]

The compression wave velocity, V), in a confined one-dimensional soil is a function of stiffness,
Eoeq, @and the mass density, p, as:

E,. 1—-v)E
Vo = 4 where Eoeqg = ( v)
p (1+v)(1—2v)

and p= Yunsat (3_14)
g
in which y nsat is the total unsaturated unit weight and g is the gravity acceleration (9.8 m/sz).}

3.3.6 | Shear wave velocity V¢ [ULT]

The shear wave velocity, V,, in a confined one-dimensional soil is a function of shear stiffness,
G, and the mass density, p, as:

G E n
Vs =4/ — where G=——— and p= Yunsat (3-15)
p 2(1+v) g

in which ynsqt is the total unsaturated unit weight and g is the gravity acceleration (9.8 m/s?).

3.3.7 ! Cohesion (c) or undrained shear strength (s,)

The cohesive strength has the dimension of stress. In the Mohr-Coulomb model, the cohesion
parameter may be used to model the effective cohesion c' of the soil (cohesion intercept), in
combination with a realistic effective friction angle ¢' (see Figure 3-4 (p. 38) (a)). This may
not only be done for drained soil behaviour, but also if the type of material behaviour is set to
Undrained (A), as in both cases PLAXIS will perform an effective stress analysis. Alternatively,
the cohesion parameter may be used to model the undrained shear strength s, of the soil, in
combination with ¢ = ¢, = 0 when the Drainage type is set to Undrained (B) or Undrained (C)
In that case the Mohr-Coulomb failure criterion reduces to the well-known Tresca criterion.
PLAXIS allows for an increase of shear strength with depth using the s j,c parameter (3.4
Depth-dependency (p. 40)).

The disadvantage of using effective strength parameters ¢' and ¢' in combination with the
drainage type being set to Undrained (A) is that the undrained shear strength as obtained from
the model may deviate from the undrained shear strength in reality because of differences in the
actual stress path being followed. In this respect, advanced soil models generally perform better
than the Mohr-Coulomb model, but in all cases it is recommended to compare the resulting
stress state in all calculation phases with the present shear strength in reality (Jo;-03/ = 2's,) .

On the other hand, the advantage of using effective strength parameters is that the change in
shear strength with consolidation is obtained automatically, although it is still recommended to
check the resulting stress state after consolidation.
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The advantage of using the cohesion parameter to model undrained shear strength in
combination with ¢ = 0 (Undrained (B) or Undrained (C)) is that the user has direct control over
the shear strength, independent of the actual stress state and stress path followed. Please note
that this option may not be appropriate when using advanced soil models.

PLAXIS can handle cohesionless sands (c = 0), but some options may not perform well. To avoid
complications, non-experienced users are advised to enter at least a small value in soil layers
near the ground surface (use ¢ > 0.2 kPa). Please note that a positive value for the cohesion
may lead to a tensile strength, which may be unrealistic for soils. By default,the Tension cut-off
option is used to reduce the tensile strength.

PLAXIS offers a special option for the input of layers in which the cohesion increases with depth
(see 3.4 Depth-dependency (p. 40)).

3.3.8  Friction angle (¢p)

The friction angle ¢ (phi) is entered in degrees. In general the friction angle is used to model
the effective friction of the soil, in combination with an effective cohesion c¢' (Figure 3-4 (p.

38) (a)). This may not only be done for drained soil behaviour, but also if the type of material
behaviour is set to Undrained (A), since in both cases PLAXIS will perform an effective stress
analysis. Alternatively, the soil strength is modelled by setting the cohesion parameter equal to
the undrained shear strength of the soil, in combination with ¢ = 0 (Undrained (B) or Undrained
(C)) (Figure 3-4 (p. 38) (b)). In that case the Mohr-Coulomb failure criterion reduces to the
well-known Tresca criterion.

A
a) b)
shear
stress

shear
stress

-03

c=s,

-0

normal r normal
-03 -03 -0, stress -03 -02 -0, stress

Figure 3-4: Stress circles at yield; one touches Coulomb's envelope. a) Using effective
strength parameters (Mohr-Coulomb) - b) Using undrained strength parameters (Tresca).
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Figure 3-5: Failure surface in principal stress space for cohesionless soil

High friction angles, as sometimes obtained for dense sands, will substantially increase plastic
computational effort. Moreover, high friction may be subjected to strain-softening behaviour,
which means that such high friction angles are not sustainable under (large) deformation.
Hence, high friction angles should be avoided when performing preliminary computations

for a particular project* The friction angle largely determines the shear strength as shown in
Figure 3—-4 (p. 38) by means of Mohr's stress circles. A more general representation of the
yield criterion is shown in Figure 3-5 (p. 39). The Mohr-Coulomb failure criterion proves

to be better for describing soil strength for general stress states than the Drucker-Prager
approximation.

© Note: *The friction angles are in the order of 20 - 30 degrees for clay and silt (the more

plastic the clay, the lower the friction), and 30 - 40 degrees for sand and gravel (the
denser the sand, the higher the friction).

3.3.9 | Dilatancy angle (¢)

The dilatancy angle, Y (psi), is specified in degrees. Apart from heavily overconsolidated layers,
clay soils tend to show little dilatancy (% ~ 0). The dilatancy of sand depends on both the
density and the friction angle. In general the dilatancy angle of soils is much smaller than the
friction angle. For quartz sands the order of magnitude is ¥ ~ ¢ — 30°. For ¢-values of less than
30°, however, the angle of dilatancy is mostly zero. A small negative value for  is only realistic
for extremely loose sands. In the Hardening Soil model or Hardening Soil model with small-strain
stiffness the end of dilatancy, as generally observed when the soil reaches the critical state,

can be modelled using the Dilatancy cut-off. However, this option is not available for the Mohr-

Coulomb model. For further information about the link between the friction angle and dilatancy,
see Bolton (1986)..

A positive dilatancy angle implies that in drained conditions the soil will continue to dilate as long
as shear deformation occurs. This is clearly unrealistic, as most soils will reach a critical state
at some point and further shear deformation will occur without volume changes. In undrained
conditions a positive dilatancy angle, combined with the restriction on volume changes, leads

to a generation of tensile pore stresses. In an undrained effective stress analysis therefore the
strength of the soil may be overestimated.
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When the soil strength is modelled as undrained shear strength, s, and ¢ = 0, (Undrained (B)

or Undrained (C)) the dilatancy angle is automatially set to zero. Great care must be taken when
using a positive value of dilatancy in combination with drainage type set to Undrained (A). In that
case the model will show unlimited soil strength due to tensile pore stresses. These tensile pore
stresses can be limited by setting the cavitation cut-off.

3.3.10 | Tension cut-off

In some practical problems an area with tensile stresses may develop. According to the Coulomb
envelope shown in Figure 3-4 (p. 38) this is allowed when the shear stress (radius of Mohr
circle) is sufficiently small. However, the soil surface near a trench in clay sometimes shows
tensile cracks. This indicates that soil may also fail in tension instead of in shear. Such behaviour
can be included in a PLAXIS analysis by selecting the tension cut-off. In this case Mohr circles
with positive principal stresses are not allowed. When selecting the tension cut-off the allowable
tensile strength may be entered. For the Mohr-Coulomb model the tension cut-off is, by default,
selected with a tensile strength of zero.

3.4 Depth-dependency

The advanced features comprise the increase of stiffness and cohesive strength with depth
and the use of a tension cut-off. In fact, the latter option is used by default, but it may be
deactivated here, if desired. These parameters are defined in the Depth-dependency blocks on
the Mechanical tabsheet of the Soil window.

3.4.1/ Increase of stiffness (E;,¢)

In real soils, the stiffness depends significantly on the stress level, which means that the
stiffness generally increases with depth. When using the Mohr-Coulomb model, the stiffness is
a constant value. In order to account for the increase of the stiffness with depth the E;,.-value

may be used, which is the increase of the Young's modulus per unit of depth (expressed in the
unit of stress per unit depth). At the level given by the y,s parameter, and above, the stiffness is

equal to the reference Young's modulus, Ery, as entered on the Mechanical tabsheet. Below, the
stiffness is given by:
E(y) = Eref + (yref - y)Emc (y < y'ref) (3—16)

where y represents the vertical direction. The actual value of Young's modulus in the stress
points is obtained from the reference value and Ej,.. Note that during calculations a stiffness

increasing with depth does not change as a function of the stress state.

©® Note: Note that in PLAXIS 3D the vertical coordinate is z instead of y.

3.4.2 Increase of cohesion or shear strength with depth (cjc or sy inc)

PLAXIS offers an advanced option for the input of clay layers in which the cohesion, c, (or
undrained shear strength, s,) increases with depth. In order to account for the increase of the

cohesion with depth the c;,.-value may be used, which is the increase of cohesion per unit of
depth (expressed in the unit of stress per unit depth). At the level given by the y,r parameter,
and above, the cohesion is equal to the (reference) cohesion, Cref, @s entered on the Mechanical
tabsheet. Below, the cohesive strength is given by:
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C(y) = Cref + (yref - y)cinc (y < yref) a)
su(y) = Sugef + (yref - y)su,inc (y < yref) b)

where y represents the vertical direction. Note that when using effective strength properties
(p'>0) it is generally not necessary to use an increase of cohesion with depth, since the friction
together with the initial effective stress will result in an increasing shear strength with depth.

(3-17)

3.5 On the use of the Mohr-Coulomb model
in dynamics calculations [ULT]

When using the Mohr-Coulomb model in dynamics calculations, the stiffness parameters need
to be selected such that the model correctly predicts wave velocities in the soil ( Eqn. 3-14 (p.
37) and Egn. 3-15 (p. 37) ). This generally requires a much larger small strain stiffness

rather than a stiffness at engineering strain levels. When subjected to dynamic or cyclic loading,
the Mohr-Coulomb model may generate plastic strains if stress points reach the Mohr-Coulomb
failure criterion, which will lead to damping in dynamics calculations. However, it should be
noted that the stress cycles within the Mohr-Coulomb failure contour will only generate elastic
strains and no (hysteretic) damping, nor accumulation of strains or pore pressure or liquefaction.
In order to simulate the soil's damping characteristics in cyclic loading, Rayleigh damping may
be defined.
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The Hoek-Brown model (rock
behaviour)

The material behaviour of rock differs from the behaviour of soils in the sense that it is generally
stiffer and stronger. The dependency of the stiffness on the stress level is almost negligible,

so stiffness of rocks can be considered constant. On the other hand, the dependency of the
(shear) strength on the stress level is significant. In this respect, heavily jointed or weathered
rock can be regarded a frictional material. A first approach is to model the shear strength of rock
by means of the Mohr-Coulomb failure criterion. However, considering the large range of stress
levels where rock may be subjected to, a linear stress-dependency, as obtained from the Mohr-
Coulomb model, is generally not sufficient. Furthermore, rock may also show a significant tensile
strength. The Hoek-Brown failure criterion is a better non-linear approximation of the strength of
rocks. It involves shear strength as well as tensile strength in a continuous formulation. Together
with Hooke's law of isotropic linear elastic behaviour it forms the Hoek-Brown model for rock
behaviour. The 2002 edition of this model (Hoek, Carranza-Torres & Corkum, 2002) has been
implemented in PLAXIS 2D to simulate the isotropic behaviour of rock-type materials. The
implementation of the model, including the material strength factorization, is based on Bentz
Schwab, Vermeer &Kauther, (2007). More background information on the Hoek-Brown model
and the selection of model parameters can be found in Hoek, 2006. For anisotropic behaviour of
stratified rock reference is made to 5 The Jointed Rock model (anisotropy) (p. 54).

4.1 Formulation of the Hoek-Brown model

The generalised Hoek-Brown failure criterion can be formulated as a non-linear relationship
between the major and minor effective principal stresses (considering tension positive and
compression negative):
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0'1—0'3—|aci|(mb 3 +s) (4-1)

where my, is a reduced value of the intact rock parameter m;, which also depends on the
Geological Strength Index (GSI) and the Disturbance Factor (D):

e GSI —100 42
TSP 8 T 14D 4-2)
s and a are auxiliary material constants for the rock mass, that can be expressed as:

. GSI —100 4-3

s=exp| ————— -
P\ 953D (4-3)
1 n 1 —GSI —20 4-d

==+ =€ —e€ —_ -
T2 TP 1s P\ 73 (4-4)

o.; is the uni-axial compressive strength of the intact rock material (defined as a positive value).
From this value, the uni-axial compressive strength of the specific rock under consideration, o,
can be obtained by:

.= —|ogils® (4-5)
The tensile strength of the specific rock under consideration, o;, can be obtained by:

3|Uci|

(4-6)

O¢ —
mp

The Hoek-Brown failure criterion is illustrated in Figure 4-1 (p. 43).
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Figure 4-1: Hoek-Brown failure criterion in principal stresses

In the framework of plasticity theory, the Hoek-Brown failure criterion is reformulated into the
following yield function:

fup =0y — o4+ f(o—g) where f(ag) = |0l <mb 73 + S> (4-7)

| ci|

For general three-dimensional stress states, more than one yield function is required to deal with
the corners of the yield contour, similar to the full Mohr-Coulomb criterion. Defining compression
as negative and considering ordering of principal stresses such that 6'1=0',=0"3, the full criterion

can be captured by two yield functions:

— _ _ ! a
fuB1s =01 — o5 + f(ag) where f(ag) = |o| (mb 73 + s) (4-8)

|oei
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— . _ ! a
fup12 =0y — o+ f(a'2) where f(a'2) = |0l (mbﬁ + s) (4-9)

|0l

The full Hoek-Brown failure contour (f; = 0) in principal stress space is illustrated in Figure 4-2
(p. 44).

G, O3
Figure 4-2: The Hoek-Brown failure contour in principal stress space

In addition to the two yield functions, two corresponding plastic potential functions are defined
for the Hoek-Brown model:

1 + sin (Ymeb) )
gmB13 = S1 — <— S 4-10
13 1 1 — sin (¢m0b) 3 ( )

1 + sin (Ymob) )
guB12 = S1 — <— S 4-1
12 1 1 _ sin (¢m0b) 2 ( )

where S; are the transformed stresses, defined as:
—0; s .
.= —Z 4 — for i=1,2,3 (4-12)
mb|0'cz| mb

Umop 1S the mobilised dilatancy angle, varying with ¢'s from its input value at (o'3 = 0) down to
zero at -0'3 =0y and beyond:

oy + 04

Vrmob = P >0 (0> —0f > oy) (4-13)

Moreover, in order to allow for plastic expansion in the tensile zone, an increased artificial value
of the mobilised dilatancy is used:

/

Ymob = ¥ + Z—j(QOO — 1) (U,’5 > oy > 0) (4-14)

The evolution of the mobilised dilatancy angle as a function of o'z is visualized in Figure 4-3 (p.
45).
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Figure 4-3: Evolution of mobilised dilatancy angle

Regarding the elastic behaviour of the Hoek-Brown model, Hooke's law of isotropic linear elastic
behaviour, as described in 2.3 Elastic strains (p. 18), is adopted. This part of the model involves

Young's modulus, E, representing the in-situ stiffness of the jointed rock mass before failure,
and Poisson's ratio, v, describing transverse straining.

4.2 | Conversion of Hoek-Brown to Mohr-
Coulomb

In order to compare the Hoek-Brown failure criterion with the well-known Mohr-Coulomb failure
criterion for practical applications involving a particular stress range, a balanced fit can be made
for confining stresses in the range (considering tension positive and compression negative):

/ /
_O-t < U3 < _U3max

This gives the following expressions for the Mohr-Coulomb effective strength parameters ¢' and
c' (Hoek, E., C. Carranza-Torres, B. Corkum, et al(2002)).

6amy(s + myoh,)* "

2 (1 + a) (2 + a) + Gamb(s + mbagn) ol
-1

Sin(¢/) = (4_15)

g loeil[(1+ 2a) s + (1 — a) myoy, (s + mpoy,)”
- (4-16)

(6amb (s+mbo"3n) “ >

(1+a)(2+ a)\/l t e

where '3, = -0'3max/ |0cil The upper limit of the confining stress, 6'3max depends on the
application.

4.3 | Parameters of the Hoek-Brown model

The Hoek-Brown model involves a total of 8 parameters, which are generally familiar to
geologists and mining engineers. These parameters with their standard units are listed below:

Erm The rock mass Young's modulus [kN/mz]
v Poisson's ratio [-]
logi | Uni-axial compressive strength of the intact rock (>0) [KN/m?]
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m; Intact rock parameter [-]
GSI Geological Strength Index [-]
D Disturbance factor [-]
Y max Dilatancy angle (at o'3 = 0) [°]
Oy Absolute value of confining pressure ¢'s at which ¢ = 0° [kN/mz]

On the Mechanical tabsheet the rock mass intrinsic parameters are also displayed:

mp Rock mass parameter [-]

s Rock mass parameter [-]

a Rock mass parameter [-]

O Rock mass tensile strength [kN/mz]
Oc Rock mass uni-axial compressive strength [kN/mz]

©@ Note: Note that it is common in rock mechanics to express E, o¢; and oy, in the unit MPa

(megaPascal = MN/mz), whereas the input values in PLAXIS are given in standard units
as defined in the project properties.

The Hoek-Brown model is the most used failure criterion for rock masses, nevertheless there
are some uncertainties regarding the input parameters that require a consolidated experience.
For this reason, PLAXIS implements in the side panel of the Mechanical tabsheet of the Hoek-
Brown model a pre-processing tool to guide the user in the determination of the rock mass
strength and stiffness parameters.

* Analysis: shows the Hoek-Brown failure envelope in the plane of principal effective stresses
o'3 - ¢y, in order to visualise the effects of changing of rock mass parameters on the failure
envelope.

* The second tabsheet is specific to determine the parameter |oc,~|, m;j, GSI and D. More details
are given below.

4.3.1' The rock mass Young's modulus E,,

In principle, Young's modulus can be measured from axial compression tests or direct shear
tests on rock samples. However, this modulus is more applicable to the intact rock material, and
should be reduced to obtain a representative stiffness of the in-situ rock mass. The rock mass
Young's modulus E,, is assumed to be a constant value for the considered rock layer. The rock

mass stiffness E,, can be estimated through one of the suggested empirical correlations.

®* Generalised Hoek & Diederichs (2006):

E,. = E;(0.02 1-D/2
rm = 2| 0.02 4 1 + e(60+15D—GSI)/11 (4-17)
where
E; = The intact rock modulus.
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GSI

D =

Geological strength Index.

Disturbance factor.

When no direct values of the intact rock modulus E; are available or where undisturbed

sampling for measurement of E; is difficult, it is possible to estimate the intact rock modulus

from the following relationship:

Ei = MRO’Cl'

where

MR

Table 4-1: Guidelines for the selection of modulus ratio (MR) values (Hoek & Diederichs

The Modulus Ratio originally proposed by
4-1 (p. 47) and og; is the uni-axial compressive strength.

Deere, 1968 and reported in Table

(2006))

Name Rock type Texture MR MRz
Agglomerate Igneous Coarse 500 100
Amphibolites Metamorphic Medium 450 50

Andesite Igneous Medium 400 100
Anhydrite Sedimentary Fine 350 0

Basalt Igneous Fine 350 100

Breccia Igneous Medium 500 0

Breccia Sedimentary Coarse 290 60

Chalk Sedimentary Very fine 1000 0

Claystones Sedimentary Very fine 250 50

Conglomerates Sedimentary Coarse 350 50
erstalline Sedimentary Coarse 500 100
limestone

Dacite Igneous Fine 400 50

Diabase Igneous Fine 325 25

Diorite Igneous Medium 325 25

Dolerite Igneous Medium 350 50

Dolomites Sedimentary Very fine 425 75

Gabbro Igneous Coarse 450 50

Gneiss Metamorphic Fine 525 225

Granite Igneous Coarse 425 125
Granodiorite Igneous Coarse, Medium 425 25
Greywackes Sedimentary Fine 350 0

Gypsum Sedimentary Medium 350 0
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Name Rock type Texture MR MRz
Hornfels Metamorphic Medium 550 150
Marble Metamorphic Coarse 850 150
Marls Sedimentary Very fine 175 25
Metasandstone Metamorphic Medium 250 50
"m'\giscttéfes Sedimentary Fine 900 100
Migmatite Metamorhpic Coarse 375 25
Norite Igneous Coarse, Medium 375 25
Peridotite Igneous Very fine 275 25
Phyllites Metamorhpic Fine 550 250
Porphyries Igneous Coarse, Medium 400 0
Quartzites Metamorhpic Fine 375 75
Rhyolite Igneous Medium 400 100
Sandstones Sedimentary Medium 275 75
Schists Metamorhpic Medium 675 425
Shales Sedimentary Very fine 200 50
Siltstones Sedimentary Fine 375 25
Slates Metamorhpic Very fine 500 100
Iirizztrgriw%s Sedimentary Medium 700 100
Tuff Igneous Fine 300 100
Simplified Hoek & Diederichs (2006) that depends only in GSI/ and D:
Eypm(MPa) = 100000( 1-Dj2 ) (4-19)

1 + e((75+25D-GSI)/11)

Note that the input of Young's modulus in PLAXIS is generally in kN/m? (= kPa = 10™> MPa),

which means that the value obtained from the above formula must be multiplied by 10° .

4.3.2 Poisson's ratio v

Poisson's ratio, v, is generally in the range of 0.1 - 0.4. Typical values for particular rock types
are listed in Figure 4-4 (p. 49).
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Figure 4-4: Typical Poisson's ratio values

4.3.3! Uni-axial compressive strength of intact rock |o ;|

The uni-axial strength of intact rock |o.| can be determined in laboratory testing, e.g. axial

compression. Laboratory testing is often conducted on intact rock so that GS/ = 100 and D = 0.
In accordance with estimation methods generally executed in the field (i.e. geological hammer,
pocket knife), typical values are reported in the side panel of the pre-processing tool.

4.3.4 | Intact rock parameter m;

The intact rock parameter m; is an empirical model parameter. Typical values are given in the

side panel of the pre-processing tool which are based on the rock type as reported by Marinos
& Hoek (2001) and Wyllie & Mah (2004) (see also Reference Manual - Chapter 6 - Hoek-Brown
pre-processing tool - Table: Values of the constant m; for intact rock.)
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Figure 4-5: Intact rock parameter m; for Hoek-Brown model

4.3.5| Geological Strength Index GSI

The GSI parameter can be computed thanks to the side panel of the pre-processing tool. The
GSl tabsheet allows to choose between two rock types: General and Flysch. An intact rock is

equivalent to GSI = 100, whereas a soil structure is in proximity to GSI = 0. Based on the selected

rock type, the GSI can be chosen taking the structure and the surface conditions of the rock

mass into account.
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Figure 4-6: Geological Strength Index GSI for Hoek-Brown model

4.3.6  Disturbance factor D

The Disturbance factor, D, is a parameter that depends on the amount of disturbance of the rock
as a result of mechanical processes in open excavations, tunnels or mines, such as blasting,
tunnel boring, machine driven or manual excavation. No disturbance is equivalentto D = 0,
whereas severe disturbance is equivalent to D = 1. For more information see Hoek (2006).
Typical values are given in the side panel of the pre-processing tool.
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Figure 4-7: Disturbance factor D for Hoek-Brown model

© Note: The disturbance factor D should only be applied to the actual zone of damaged
rock in order to avoid greatly underestimation of the strength and overall stability. The
thickness T of the blast damaged zone depends upon the design of the blast (Reference
Manual- Chapter 6- Hoek-Brown preprocessing tool).

4.3.7  Tension cut-off

The Hoek-Brown model simulates the Tensile strength of the rock mass via the |o.; | parameter,
calculated from rock properties o., s and m,. To enhance modelling capabilities and flexibility,
PLAXIS 2D allows to calibrate separately the rock tensile strength using tension cut-off facility.
By default the tension cut-off option is disabled. When enabled, users can put a tensile strength
value, and if that value is lower than o3, the tensile capacity will be cut-off at that value. This

feature can be helpful in some situations, for instance in Safety analysis where this tension cut-
off value (but not the o; parameter) is reduced with the safety factor.

4.3.8  Dilatancy g and o,

Rocks may show dilatant material behaviour when subjected to shear under relatively low
confining stress. At larger confining stress, dilatancy is suppressed. This behaviour is modelled
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by means of a specified value of @ for o3 = 0, with a linear decrease down to zero for o'; = oy,
where o, is an additional input parameter (Figure 4-3 (p. 45)).

4.4 | On the use of the Hoek-Brown model in
dynamics calculations

When using the Hoek-Brown model in dynamics calculations, the stiffness need to be selected
such that the model correctly predicts wave velocities in the soil ( Eqn. 3-15 (p. 37) ). When
subjected to dynamic or cyclic loading, the Hoek-Brown model may generate plastic strains if
stress points reach the Hoek-Brown failure criterion, which will lead to damping in dynamics
calculations. However, the stress cycles within the Hoek-Brown failure contour will only generate
elastic strains and no (hysteretic) damping, nor accumulation of strains or pore pressure or
liquefaction. In order to simulate the rock's damping characteristics in cyclic loading, Rayleigh
damping may be defined.
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The Jointed Rock model (anisotropy)

Materials may have different properties in different directions. As a result, they may respond
differently when subjected to particular conditions in one direction or another. This aspect of
material behaviour is called anisotropy. When modelling anisotropy, distinction can be made
between elastic anisotropy and plastic anisotropy. Elastic anisotropy refers to the use of different
elastic stiffness properties in different directions. Plastic anisotropy may involve the use of
different strength properties in different directions, as considered in the Jointed Rock model.
Another form of plastic anisotropy is kinematic hardening. The latter is not considered in PLAXIS.

stratification

major joint
direction

Figure 5-1: Visualization of concept behind the Jointed Rock model

The Jointed Rock model is an anisotropic elastic perfectly-plastic model, especially meant to
simulate the behaviour of stratified and jointed rock layers. In this model it is assumed that
there is intact rock with an optional stratification direction and major joint directions. The

intact rock is considered to behave as a transversely anisotropic elastic material, quantified

by five parameters and a direction. The anisotropy may result from stratification or from other
phenomena. In the major joint directions it is assumed that shear stresses are limited according
to Coulomb's criterion. Upon reaching the maximum shear stress in such a direction, plastic
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sliding will occur. A maximum of three sliding directions ('planes') can be defined, of which

the first plane is assumed to coincide with the direction of elastic anisotropy. Each plane may
have different shear strength properties. In addition to plastic shearing, the tensile stresses
perpendicular to the three planes are limited according to a predefined tensile strength (tension
cut-off).

The application of the Jointed Rock model is justified when families of joints or joint sets are
present. These joint sets have to be parallel, not filled with fault gouge, and their spacing has to
be small compared to the characteristic dimension of the structure.

Some basic characteristics of the Jointed Rock model are:

* Anisotropic elastic behaviour for intact rock: Parameters E;, E,,, Vpt, Vis,Ght
® Shear failure according to Coulomb in 3 directions: Parameters c;, ¢; and y;
* Limited tensile strength in three directions: Parameters o ;

5.1 Anisotropic elastic material stiffness
matrix

The elastic material behaviour in the Jointed Rock model is described by an elastic material

stiffness matrix, D*. In contrast to Hooke's law, the D" -matrix as used in the Jointed Rock model
is transversely anisotropic. Different stiffnesses can be used normal to and in a predefined
direction ('plane 1'). This direction may correspond to the stratification direction or to any other
direction with significantly different elastic stiffness properties.

Consider, for example, a horizontal stratification, where the stiffness in z- direction, E,, is
different from the stiffness in the rock as a continuum, E;. In this case the 'plane 1' direction is

parallel to the xy-plane and the following constitutive relations exist (See: Zienkiewicz & Taylor:
The Finite Element Method, 4th Ed.):

_ Ou _ VniOyy _ V5022
€2z = E, n a)
2 _ Unt Oz U_yy _ Vis0 2z
Ew= "5t m "5 b
~ — vtso.—a:z _ visé?ﬂ/ h
Erz = E, E, E, C) (5_1)
_ 2(14wn) d)
Yzy = —F, zy
. Oy
Y- = 3, €)
: _
Yoz = G_z:t f)

The inverse of the anisotropic elastic material stiffness matrix, ( D*)'1, follows from the above
relations. This matrix is symmetric. The regular material stiffness matrix D" can only be obtained
by numerical inversion.

In order for the D" to remain positive definite, the following requirement has to be obeyed:

E 1—w
Ve < E( s ”t) (5-2)

In general, the stratification plane will not be parallel to the global xy-plane, but the above
relations will generally hold for a local (n,s,t) coordinate system where the stratification plane
is parallel to the st-plane. The orientation of this plane is defined by the dip angle (or shortly
dip) and strike (see 5.3 Parameters of the Jointed Rock model (p. 59)). As a consequence,
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the local material stiffness matrix has to be transformed from the local to the global coordinate
system. Therefore we consider first a transformation of stresses and strains:

Opst = Ro0,y, 0, =R, 0, (5-3)
Enst = R5§zyz ézyz = Rglénst ( _4)
where
[ nﬁ nz nz 2n,n, 2nyn, 2n,n,
si 33 sf 25,8y 2845, 28,8,
R, — t2 t2 2 2t,t, 2t,t, 2t.t, (5-5)
NzSe MNySy NS, NgSy+ NySy MNyS, + NSy NSy + NyS,
Saty  Syty Sit,  Saty+ Syte  Syt.+ 8.ty Set.+ Sit:
[Nty Nty oty ngty +nyts nyt, ngty naty +nes;
and
[ n2 nf/ n? NgTy nyn, Ngn, |
s2 532/ s2 548y 548, 8.8,
R. — t2 t2 t2 taty tyt. tots (5-6)
2n;8; 2nySy 2n.8, NgSy+ NySy NS, + N8y N8, + NS,
2s,t,  2syty 2s.t.  sgty+syty  syt.+ sty sit.+ s.t,
| 2ngty 2n4ty 2n,t, ngty +Fngty ngt, +ngty noty +ngs, |

Nx, Ny, Nz, Sx, Sy, Sz, ty, t, and t, are the components of the normalised n, s and t-vectors in global
(x,y,z)-coordinates (i.e. 'sines' and 'cosines'; see5.3 Parameters of the Jointed Rock model (p.
59)). For plane strain conditionn, =s, =ty =t,=0and t, = 1.

It further holds that:
RT =R RI=R! (5-7)

A local stress-strain relationship in (n,s,t)-coordinates can be transformed to a global
relationship in (x,y,z)-coordinates in the following way:

*

Dnst = Dnsténst

Opst — R:Lstga)yz = Rogzyz = D:Lst Rs§xyz (5—8)

Enst = R28t§myz
Hence,

gzyz = R;I DnstRegxyz (5_9)
Using to above condition ( Eqn. 5-7 (p. 56) )

* * * *
gzyz = RZ Dnsthgxyz = Dwyzgzyz or D:nyz = RZDnsth (5_10)

Actually, not the D*-matrix is given in local coordinates but the inverse matrix ( p* ).

*
énst = Dnstgnst
- R, —R'D., 'R,0, .= R'D, R
gnst - ogacyz = §zyz - (3 nst ffgzyz - € nst ngyz (5_11)
*
§n5t = ngzyz
Hence,

5 The Jointed Rock model (anisotropy) | 56



* — * — * * _ 71
D, =R'D., 'R, o D, -|RD., 'R, (5-12)

TYz

Instead of inverting the ( D), “)-matrix in the first place, the transformation is considered first,
after which the total is numerically inverted to obtain the global material stiffness matrix D;yz.

5.2 Plastic behaviour in three directions

A maximum of 3 sliding directions (sliding planes) can be defined in the Jointed Rock model.
The first sliding plane corresponds to the direction of elastic anisotropy. In addition, a maximum
of two other sliding directions may be defined. However, the formulation of plasticity on all
planes is similar. On each plane a local Coulomb condition applies to limit the shear stress, |1|.
Moreover, a tension cut-off criterion is used to limit the tensile stress on a plane. Each plane, i,
has its own strength parameters c¢;, @;, ¢; and o .

In order to check the plasticity conditions for a plane with local (n, s, t)-coordinates it is
necessary to calculate the local stresses from the Cartesian stresses. The local stresses involve
three components, i.e. a normal stress component, o,, and two independent shear stress
components, Ts and T;.

o, =T{c (5-13)
where

o= (Un Ts Tt)T (0,)

g = (O'acx Oyy Ozz Ogzy Oy O'z:z:)T (b) (5-14)

TT = transformation matriz (3x6), forplane i

As usual in PLAXIS, tensile (normal) stresses are defined as positive whereas compression is
defined as negative.

Y a

al sliding plane

al

\/
x

Figure 5-2: Plane strain situation with a single sliding plane and vectors n, s

Consider a plane strain situation as visualised in Figure 5-2 (p. 57). Here a sliding plane is
considered under an angle a; (= dip) with respect to the x-axis. In this case the transformation

matrix T'T becomes:
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2 ¢ 0 —2sc 0 O
T = |sc —sc 0 —s2+¢c2 0 0 (5-15)
0 0 O 0 —c —c
where:
s=sin(a;) ¢=cos(ay)

In the general three-dimensional case the transformation matrix is more complex, since it
involves both dip and strike (see 5.3 Parameters of the Jointed Rock model (p. 59)):

2 2 2
n; ny n; 2n;ny, 2nyn, 2n,n;
T
T" = |ngs; MySy M.S, NgSy—+ NySy M,y +NyS, NSy + NS, (5-16)

Ngtey nyty Nty nyte +ng.ty nyt, +n.ty n.ty +n.t,

Note that the general transformation matrix, T, for the calculation of local stresses corresponds
torows 1, 4 and 6 of R, (see Egn. 5-5 (p. 56) ).

After having determined the local stress components, the plasticity conditions can be checked
on the basis of yield functions. The yield functions for plane i are defined as:

ff = 15| + optan (o) —c; (Coulomb) 17
ff=o0n —o0wi(ori < cicot(;)) (Tension cut — of f) (5-17)
Figure 5-3 (p. 58) visualizes the full yield criterion on a single plane.
7] A
N P
—0n
Ot
Figure 5-3: Yield criterion for individual plane
The local plastic strains are defined by:
09t
J
Ag? = j@j (5-18)
where g; is the local plastic potential function for plane j:
g5 = |71j| + optan (¢;) — ¢ (Coulomb) 519
95 =0y — 0y (Tension cut — of f) (5-19)

The transformation matrix, T, is also used to transform the local plastic strain increments of
plane j, Aé?, into global plastic strain increments, Ae?:

AgP = TjAgi; (5-20)
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The consistency condition requires that at yielding the value of the yield function must remain
zero for all active yield functions. For all planes together, a maximum of 6 yield functions exist,
so up to 6 plastic multipliers must be found such that all yield functions are at most zero and the
plastic multipliers are non-negative.

c _ gcle) np A¢ 8fiCT TT DT 95 np At afiCT TT DT dg;
fE=F7" =200 <A§> 55T DTyt — 3057, < Ay > =551, DTt

t(e) n aft" oy dge " o8 o o' (5-21)
Fi= 17 =X <X > 5T/ DT — X320 < X > 5T DT 57

This means finding up to 6 values of A; = 0 such thatall fj = O and A; f; = 0.
When the maximum of 3 planes are used, there are 2° - 64 possibilities of (combined) yielding.

In the calculation process, all these possibilities are taken into account in order to provide an
exact calculation of stresses.

5.3 Parameters of the Jointed Rock model

Most parameters of the Jointed Rock model coincide with those of the isotropic Mohr-Coulomb
model. These are the basic elastic parameters and the basic strength parameters.

Elastic parameters as in Mohr-Coulomb model (see 3.3 Parameters of the Mohr-
Coulomb model (p. 34))

E; Young's modulus for rock as a continuum [kN/mZ]

Vit Poisson's ratio for rock as a continuum [-]

Anisotropic elastic parameters 'Plane 1' direction (e.g. stratification direction)

E, Young's modulus perpendicular to 'Plane 1' direction [kN/mz]

Gnt Shear modulus perpendicular to 'Plane 1' direction [kN/mZ]

Poisson's ratio perpendicular to 'Plane 1' direction

Vis E, (ﬂ) [-]

Vs < E, 2

Strength parameters in joint directions (Plane i=1, 2, 3):

Ci Cohesion [kN/m?]
(oF Friction angle [°]
Wi Dilatancy angle [°]
Ot Tensile strength [kN/m?]

Definition of joint directions (Plane i=1, 2, 3):

Number of planes | Number of joint directions (1= n< 3) [-]
oy, Dip (0 ay; = 90) [°]
0y Strike (-180= o ; < 180) (az; = 90 in PLAXIS 2D) [°]
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Excess pore pressure calculati

Determination v-undrained definition -
v, definition method Direct hd
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0.9933

Mext oK Cancel

Figure 5-4: Parameters for theJointed Rock model

5.3.1/ Elastic parameters

The elastic parameters E; and v,,; are the (constant) stiffness (Young's modulus) and Poisson's
ratio of the rock as a continuum according to Hooke's law, i.e. as if it would not be anisotropic.

Elastic anisotropy in a rock formation may be introduced by stratification. The stiffness
perpendicular to the stratification direction is usually reduced compared with the general
stiffness. This reduced stiffness can be represented by the parameter E,, together with a second

Poisson's ratio, vs. In general, the elastic stiffness normal to the direction of elastic anisotropy
is defined by the parameters E, and v;s. In order to avoid singularity of the material stiffness
matrix, the input of vy is limited by:

En 1 Unt 5-22
— — =
Uts < Et < 2 ) ( )

Elastic shearing in the stratification direction is also considered to be 'weaker' than elastic
shearing in other directions. In general, the shear stiffness in the anisotropic direction can
explicitly be defined by means of the elastic shear modulus G,;. In contrast to Hooke's law of

isotropic elasticity, G . is a separate parameter and is not simply related to Young's modulus by
means of Poisson's ratio (see Egqn. 5-1 (p. 55) (d) & (e)).

If the elastic behaviour of the rock is fully isotropic, then the parameters E, and v;s can be simply
set equal to E; and v,;; respectively, whereas G,; should be set to 1/2E/(1+Vy).

5 The Jointed Rock model (anisotropy) | 60



5.3.2 | Strength parameters

Each sliding direction (plane) has its own strength properties c;, ¢; and o;; and dilatancy angle y;.
The strength properties c¢j and ¢; determine the allowable shear strength according to Coulomb's
criterion and o; determines the tensile strength according to the tension cut-off criterion. The
latter is displayed after pressing Advanced button. By default, the tension cut-off is active and
the tensile strength is set to zero. The dilatancy angle, y;, is used in the plastic potential function
g, and determines the plastic volume expansion due to shearing.

5.3.3 | Definition of joint directions

It is assumed that the direction of elastic anisotropy corresponds with the first direction where
plastic shearing may occur ('plane 1'). This direction must always be specified. In the case
the rock formation is stratified without major joints, the number of sliding planes (= sliding
directions) is still 1, and strength parameters must be specified for this direction anyway. A
maximum of three sliding directions can be defined. These directions may correspond to the
most critical directions of joints in the rock formation.

The sliding directions are defined by means of two parameters: The Dip angle (o) (or shortly
Dip) and the Strike (a5). The definition of both parameters is visualised in Figure 5-5 (p. 62).

Consider a sliding plane, as indicated in Figure 5-5 (p. 62). The sliding plane can be defined

by the vectors (s,t), which are both normal to the vector n. The vector n is the 'normal’ to the
sliding plane, whereas the vector s is the 'line of maximum declination' of the sliding plane (dip)
and the vector t is the "trace on the horizontal plane of the sliding plane" (strike). The sliding
plane makes an angle a; with respect to the horizontal plane, where the horizontal plane can
be defined by the vectors (s*t), which are both normal to the vertical axis. The angle a;is the
dip, which is defined as the positive 'downward' inclination angle between the horizontal plane
and the sliding plane. Hence, a; is the positive angle between the vectors s and s, along the

t-direction. The dip ought to be entered in the range [0°, 90°], but negative values as well as
values larger than 90° can also be entered.
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Figure 5-5: Definition of dip angle and strike

The orientation of the sliding plane is further defined by the strike, a,, which is defined in

PLAXIS as the orientation of the vector t with respect to the x-direction. The strike is defined
as the negative angle between the vectors x and t along the z-direction. The strike direction is
entered in the range [-180°, 180°].

From the definitions as given above, it follows for PLAXIS 3D that:

[, —sin(ay) sin (a2) ]

n= |n,| = |—sin(ai)cos (az) (5-23)
| T2z cos (al) J
s, — cos (1) sin (a) ]

s=|sy| = [—cos(ai)cos(az) (5-24)
| Sz —sin (041)
[t cos (a2)

t=|ty| = |—sin(az) (5-25)
¢ 0

whereas for PLAXIS 2D a, is taken by definition as a, = 90°, such that:

(1, —sin (o)

n= |n,| = | cos(a) (5-26)
", 0
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s, —cos (a1)

s=|sy| = | —sin() (5-27)
| s, 0
[t 0

t=|t,| = |0 (5-28)
¢, 1

Figure 5-6 (p. 63) shows some examples of how sliding planes occur in a 3D models for
different values of oy and a,. As it can be seen, for plane strain conditions (the cases considered

in PLAXIS 2D) only a; is required. By default, a, is fixed at 90°.

=0

B

E
Plaxis 3D )

t1=30° !

w=30"
=90

Plaxis 212

t1=30F A
(12=20° J

Figure 5-6: Examples of failure directions defined by a4 and a,

5.4  On the use of the Jointed Rock model in
dynamics calculations

When using the Jointed Rock model in dynamics calculations, the stiffness need to be selected
such that the model correctly predicts wave velocities in the soil (Equation Egn. 3-15 (p.

37) ). When subjected to dynamic or cyclic loading, the Jointed Rock model may generate
plastic strains if stress points reach the Coulomb failure criterion, which will lead to damping in
dynamics calculations. However, it should be noted that stress cycles within the Coulomb failure
contour will only generate elastic strains and no (hysteretic) damping, nor accumulation of
strains or pore pressure or liquefaction. In order to simulate the rock's damping characteristics in
cyclic loading, Rayleigh damping may be defined.

5.4 On the use of the Jointed Rock model in dynamics calculations | 63



© Note: A slightly modified version of the Jointed Rock model with generalised Mohr-
Coulomb failure criterion in addition to the individual failure directions is available as
user-defined soil model. Contact Plaxis for more information.

© Note:

e In a geological context, strike is defined as the angle from the North to the strike
of the dipping plane (positive towards East direction), whereas in PLAXIS definition
strike is defined from the global x-direction to the strike of the dipping plane (with
the same positive rotation direction). If we define the angle from the North direction
to the x-direction of the PLAXIS model as declination, then strike in PLAXIS is the
geological strike minus declination.

e Moreover, there might be confusion between true strike and its opposite direction
(780° direction). Hence, care must be taken when translating strike from geological
data into PLAXIS input.
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The Hardening Soil model (Isotropic
hardening)

In contrast to an elastic perfectly-plastic model, the yield surface of a hardening plasticity model
is not fixed in principal stress space, but it can expand due to plastic straining. Distinction can be
made between two main types of hardening, namely shear and compression hardening. Shear
hardening is used to model irreversible strains due to primary deviatoric loading. Compression
hardening is used to model irreversible plastic strains due to primary compression in oedometer
loading and isotropic loading. Both types of hardening are contained in the present model.

The Hardening Soil model is an advanced model for simulating the behaviour of different types
of soil, including soft and stiff soils, Shanz (1998). When subjected to primary deviatoric loading,
soil shows a decreasing stiffness and simultaneously irreversible plastic strains develop. In the
special case of a drained triaxial test, the observed relationship between the axial strain and

the deviatoric stress can be well approximated by a hyperbola. Such a relationship was first
formulated by Kondner (1963) and later used in the well-known hyperbolic model (Duncan &
Chang, 1970). The Hardening Soil model, however, supersedes the hyperbolic model by far:
Firstly by using the theory of plasticity rather than the theory of elasticity, secondly by including
soil dilatancy and thirdly by introducing a yield cap. Some basic characteristics of the model are:

® Stress dependent stiffness according to a power law: Input parameter m

° ref

Plastic straining due to primary deviatoric loading: Input parameter Egj

ref
oed

® Plastic straining due to primary compression: Input parameter E

° ref

Elastic unloading / reloading: Input parameters E;>', v,
* Failure according to the Mohr-Coulomb failure criterion: Parameters ¢, ¢ and ¢

A basic feature of the present Hardening Soil model is the stress dependency of soil stiffness.
For oedometer conditions of stress and strain, the model implies for example the relationship
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Eoea = E® (5 / p™)™. In the special case of soft soils it is realistic to use m = 1. In such situations

there is also a simple relationship between the modified compression index A*, as used in
models for soft soil and the oedometer loading modulus (see also Parameters of the Soft Sail
model).

ref A
ref P )\* o
[ A— 6-1
oed )\* (1 60) ( )

where pref is a reference pressure. Here we consider a tangent oedometer modulus at a
particular reference pressure pref. Hence, the primary loading stiffness relates to the modified
compression index A" or to the standard Cam-Clay compression index A.

Similarly, the unloading-reloading modulus relates to the modified swelling index K orto the
standard Cam-Clay swelling index k. There is the approximate relationship:

2pref * k
k= ——— 6-2
K" (1 + 60) ( )

This relationship applies in combination with the input value m = 1.

ref
E, =~

6.1 Hyperbolic relationship for standard
drained triaxial test

A basic idea for the formulation of the Hardening Soil model is the hyperbolic relationship
between the vertical strain, €4, and the deviatoric stress, q, in primary triaxial loading. Here

standard drained triaxial tests tend to yield curves that can be described by:

—&1 = E%ﬁ for: q<gqy (6-3)
where

qa = Asymptotic value of the shear strength.

E; =

Initial stiffness.

E;is related to Es5g by:

2Fx
>Ry (6-4)
This relationship is plotted in Figure 6-1 (p. 67). The parameter Esg is the confining stress
dependent stiffness modulus for primary loading and is given by the equation:
ot [ CCOS () — 0 sin "
By — B! (p) — o3 : () (6-5)
ccos () + pref sin (p)

where

Eggf = Reference stiffness modulus corresponding to the reference confining

pressure p¥ .

In PLAXIS, a default setting pref = 100 stress units is used. The actual stiffness depends on the
minor principal stress, 0's, which is the confining pressure in a triaxial test. Please note that o'
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is negative for compression. The non-linearity of stress dependency is defined by the power
m. In order to simulate a logarithmic compression behaviour, as observed for soft clays, the
power should be taken equal to 1.0:(i.e., linear dependency). Conversely, Janbu (1963) reports
values of m around 0.5 for Norwegian sands and silts, whilst von Soos (1990) reports values in
the range of 0.5 < m < 1.0.

The ultimate deviatoric stress, gy, and the quantity g, in Eqn. 6-3 (p. 66) are defined as:

) 2sin (p) q
g5 = (ccot (p)) — 03) T—sin(g) R—J;

Again it is remarked that 0’3 is negative in compression. The above relationship for gy is derived

from the Mohr-Coulomb failure criterion, which involves the strength parameters ¢ and ¢. As
soon as q = gy, the failure criterion is satisfied and perfectly plastic yielding occurs as described

by the Mohr-Coulomb failure criterion.

and : Qo = (6-6)

The ratio between gy and qq is given by the failure ratio Ry, which should obviously be smaller
than or equal to 1. In PLAXIS, Ry = 0.9 is chosen as a suitable default setting.

For unloading and reloading stress paths, another stress-dependent stiffness modulus is used:

5 Eref( ccos (p) — oy sin (o) )m 6-7)
“ "\ ccos (¢) + pef sin ()
where
E,Zif = Unloading-reloading Young's modulus, corresponding to the reference

pressure p'¥ .

O Note: In many practical cases it is appropriate to set E;fif equal to 3 E;Sf; this is the
default setting used in PLAXIS.

deviatoric stress

A asymptote

>

axial strain  -&;

Figure 6-1: Hyperbolic stress-strain relation in
primary loading for a standard drained triaxial test
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6.2 | Approximation of hyperbola by the
Hardening Soil model

For the sake of convenience, restriction is made here to triaxial loading conditions with o', = 0'3
being the intermediate and minor principal stresses and ¢'; being the major principal stress. It
should also be noted that compressive stresses and strains are considered negative.

Moreover, it is assumed that g < gy, as also indicated in Figure 24. For a more general
presentation of the Hardening Soil model the reader is referred to Schanz, Vermeer & Bonnier
(1999). In this section it will be shown that this model gives virtually the hyperbolic stress strain
curve of Egn. 6-3 (p. 66) when considering stress paths of standard drained triaxial tests.

Let us first consider the corresponding plastic strains. This stems from a shear hardening yield
function of the form:

f=Ff -7 (6-8)
where
f = Function of stress
P = Plastic hardening parameter, which is a measure of the mobilised plastic shear
strain
2 q 2q

f - E 1 _Q/Qa a Eur (6_9)

with q, qq, E; and E,, as defined by Egn. 6-3 (p. 66) to Eqgn. 6-6 (p. 67) , whilst the
superscript p is used to denote plastic strains.

An essential feature of the above definitions for f is that it matches the well-known hyperbolic
law Eqgn. 6-3 (p. 66) . For checking this statement, one has to consider primary loading,
as this implies the yield condition f = 0. Moreover, it is assumed that for hard soils, plastic

volumetric strain changes (g, ” ) tend to be relatively small and this leads to the approximation:
P = —(2e) — eb) ~ —2¢0 (6-10)
For primary loading, v = f and it follows from Egn. 6-8 (p. 68) and Egn. 6-10 (p. 68) that:

1 - 1 q q

P o - _
81 2f Ez 1 _q/QG EuT

(6-11)

In addition to the plastic strains, the model accounts for elastic strains. Plastic strains develop
in primary loading only, but elastic strains develop both in primary loading and unloading /
reloading. For drained triaxial test stress paths with o', = 0'3 = constant, the elastic Young's
modulus E,, remains constant and the elastic strains are given by the equations:

q q
_6(13 = Eur —E; = —Eg :—VUTE—W (6_12)

where v, is the unloading-reloading Poisson's ratio. Here it should be realised that restriction
is made to strains that develop during shearing stage, whilst the strains that develop during the
very first stage of the test (consolidation) are not considered.

For the shearing stage of the triaxial test, the axial strain is the sum of an elastic component
given by Egn. 6-12 (p. 68) and a plastic component according to Eqgn. 6-11 (p. 68) .
Hence, it follows that:
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1 q
-1 =—¢€f—-efn ————
bV Ei1—q/qa
Note again that this relationship holds true in the absence of plastic volumetric strains, i.e. when

e, =0.As highlighted before, plastic volumetric strains will never be precisely equal to zero,
but for hard soils plastic volumetric strain changes tend to be small when compared with the
axial strain.

(6-13)

For a given constant value of the hardening parameter, y* , the yield condition f = 0, can be

visualised in p' - g-plane by means of a yield locus. Hence, y* is associated with mobilised
friction. When plotting such yield loci, one has to use Egn. 6-9 (p. 68) as well as Eqgn.

6-7 (p. 67) and Eqn. 6-6 (p. 67) for E5g and E,, respectively. Because of the latter
expressions, the shape of the yield loci depends on the exponent m. For m = 1, straight lines
are obtained, but slightly curved yield loci correspond to lower values of the exponent. Figure

6-2 (p. 69) shows the shape of yield loci for increasing values of y* considering m = 0.5,

being typical for hard soils. Hence, v’ can be regarded as the plastic shear strain related to the
mobilised shear resistance.

Deviatoric stress
oy — a3|
A

Mohr-Coulomb failure line \

Mean effective stress

Figure 6-2: Successive yield loci for various constant values of the hardening parameter y”

6.3 | Plastic volumetric strain for triaxial
states of stress

Having presented a relationship for the plastic shear strain, y* , attention is now focused on the
plastic volumetric strain, €, P . As for all plasticity models, the Hardening Soil model involves
a relationship between rates of plastic strain, i.e. a relationship between % and 4*. This shear
hardening flow rule has the linear form:

&y = sin(¢m) " (6-14)

Clearly, further detail is needed by specifying the mobilised dilatancy angle @,,. For the present
model, the following is considered (see also Figure 6-3 (p. 70)):
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For sin(p.;,) < 3/4sin () : Ym =0
For sin(p;,) > 3/4sin(p) and ¥ >0 sin (¢m) = max(w O)

1—sin(py,) sin(pey) ? (6—15)
For sin(¢;,) > 3/4sin(p) and ¢ <0 Y =P
If ¢=0 Ym =0
where
Pev = Critical state friction angle, being a material constant independent of density.

Pm Mobilised friction angle:

/ /
sin| ¢, | = 179 (6-16)
o) + o — 2ccot ()

Y

] § 10 1% 20 25 30 35

Om

Figure 6-3: Plot of mobilized dilatancy angle g, and
mobilized friction angle ¢,, for Hardening Soil model

The above equations are a small adaptation from the well-known stress-dilatancy theory by
Rowe (1962), as explained by Schanz & Vermeer (1966). The mobilised dilatancy angle, ¢,

follows Rowe's theory for larger values of the mobilised friction angle, as long as this results
in a positive value of y,. For small mobilised friction angles and for negative values of Y, as
computed by Rowe's formula (as long as the dilatancy angle y is positive), Y, is taken zero.
Furthermore, in all cases when ¢ = 0, Y, is set equal to zero.

The essential property of the stress-dilatancy theory is that the material contracts for small
stress ratios @, < @y, Whilst dilatancy occurs for high stress ratios @, > @.,. At failure, when

the mobilised friction angle equals the failure angle, ¢, it is found from Egn. 6-15 (p. 70) that:
sin — sin (e
in() - o) —sin (o) 6-17)
1 — sin (¢) sin (@)
or equivalently:

n . sin ((p) — sin (@[)) ]
> (%’) ~ 1 —sin(p)sin (¢ (6-18)

Hence, the critical state angle can be computed from the failure angles ¢ and . PLAXIS
performs this computation automatically and therefore users do not need to specify a value for
@cy- Instead, one has to provide input data on the peak friction angle, ¢, and the peak dilatancy

angle, Y.
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The shear hardening process will continue with the mobilization of the shear strength, until the
maximum shear strength according to the Mohr-Coulomb model failure criterion is reached.

6.4 | Parameters of the Hardening Soil Model

Some parameters of the present hardening model coincide with those of the non-hardening
Mohr-Coulomb model. These are the failure parameters ¢, ¢ and .

Soil - Hardening Soil - <MoName>

4 I

General Mechanical  Groundwater

Property
Stiffness

EL
Vir
Alternatives

Use alternatives

Stress-dependency
power (m)
Pref
Strength
Shear
Cref
@' {phi)
w (psi)
Depth-dependency
Cine
¥ref
Dilatancy cutoff

Dilatancy-cutoff

Tension
Tension cut-off
Tensile strength
Miscellaneous

Use defaults

Determination

v, definition method

¥ u,equivalent (nu)

Excess pore pressure calculation

Thermal Interfaces *  Initial *
Unit Value
kN/m? 0.000
kMjm2 0.000
kN/m? 0.000
0.2000
O
10.00E9
10.00E9
0,5000
0.5000
kM/m2 100.0
kN/m? 0.000
= 0,000
° 0.000
kM/m2jm 0,000
m 0.000
O
1.000E-9
999.0
kM/m2 0.000
1.000
0.9000
v-undrained definition -
Direct -
0.45950
9866
0.000
Mext oK Cancel

Figure 6-4: Parameters for the Hardening Soil model
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Failure parameters as in Mohr-Coulomb model (see 3.3 Parameters of the Mohr-Coulomb model

(p. 34))

c (Effective) cohesion [KN/m? ]
[0) (Effective) angle of internal friction [°]
1) Angle of dilatancy [°]
o Tension cut-off and tensile strength [kN/m? ]
Basic parameters for soil stiffness:
Secant stiffness in standard drained triaxial test at the
ref 2
Eso reference stress [kN/m* ]
Tangent stiffness for primary oedometer loading at the
ref 2
Boed reference stress [kN/m* ]
ot Unloading / reloading stiffness at the reference stress 5
B (default E,, " = 3E5, ") [kN/m™ ]
m Power for stress-level dependency of stiffness [-]
Advanced parameters (it is advised to use the default setting):
Poisson's ratio for unloading-reloading (default v, =
Vur [-]
0.2)
ref Reference stress for stiffnesses (default p™@ =100 kN/ 2
p 2 [KN/m* ]
m*)
Kpe Ko-value for normal consolidation (default K, ™ = 1- sin -]
)
Failure ratio gs / q, (default Rf = 0.9) (see Figure 6-1 (p.
67)).
Otension Tensile strength (default otepsion = 0) [kN/m2 ]
Cinc As in Mohr-Coulomb model (default cj,c = 0) [kN/m® ]

Instead of entering the basic parameters for soil stiffness, alternative parameters can be
entered. These parameters are listed below:

Ce Compression index [-]
Cs Swelling index or reloading index [-]
Einit Initial void ratio [-]

6.4.1! Stiffness moduli EX, E & Ef and power m

The advantage of the Hardening Soil model over the Mohr-Coulomb model is not only the use
of a hyperbolic stress-strain curve instead of a bi-linear curve, but also the control of stress
level dependency. When using the Mohr-Coulomb model, the user has to select a fixed value of
Young's modulus whereas for real soils this stiffness depends on the stress level. It is therefore
necessary to estimate the stress levels within the soil and use these to obtain suitable values
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of stiffness. With the Hardening Soil model, however, this cumbersome selection of input

parameters is not required.

Instead, a stiffness modulus EL is defined for a reference minor principal effective stress
of -o'3= p'ef. This is the secant stiffness at 50 % of the maximum deviatoric stress, at a
cell pressure equal to the reference stress pref (Figure 6-5 (p. 73)). As a default value, the
program uses p'? =100 kN/m? .

loy — o3|

— -pref
A 03=-pP

.
-

Strain( &

Figure 6-5: Definition of E[</ and £/ for drained triaxial test results

As some PLAXIS users are familiar with the input of shear moduli rather than the above stiffness
moduli, shear moduli will now be discussed. Within Hooke's law of isotropic elasticity conversion

between E and G goes by the equation E = 2(1 + v)G. As E, is a real elastic stiffness, one may
thus write Eyr = 2(1 + v)G.r, where G, is an elastic shear modulus.

©® Note: PLAXIS allows for the input of E,, and v, but not for a direct input of G,,. In
contrast to E,,, the secant modulus Esg is not used within a concept of elasticity. As a
consequence, there is no simple conversion from Esg to Gsp.

In contrast to elasticity based models, the elastoplastic Hardening Soil model does not involve a
fixed relationship between the (drained) triaxial stiffness E5g and the oedometer stiffness E 4 for
one-dimensional compression. Instead, these stiffnesses can be inputted independently. Having
defined E5g by Eqgn. 6-5 (p. 66) , it is now important to define the oedometer stiffness. Here

we use the equation:

/ m
g3

ves | €90 (go) - & sin ()

oed

Eoed =F (6_19)

ccos(p) +p"f sin (p)

where E 4 is a tangent stiffness modulus obtained from an oedometer test, as indicated in
Figure 6-6 (p. 74).
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E oced

_pref ______________

_gl"
Figure 6-6: Definition of EZ:(; and E£’/in oedometer test results

!
3

Hence, Eyeq el is a tangent stiffness at a vertical stress of —o} = o ref Note that we

basically use o} rather than o5 and that we consider primary loading.

When undrained behaviour is considered in the Hardening Soil model the Drainage type should
preferably be set to Undrained (A). Alternatively, Undrained (B) can be used in case the effective
strength properties are not known or the undrained shear strength is not properly captured using
Undrained (A). However, it should be noted that the material loses its stress-dependency of
stiffness in that case. Undrained (C) is not possible since the model is essentially formulated as
an effective stress model.

6.4.2 | Alternative stiffness parameters

When soft soils are considered, the stiffness parameters can be calculated from the

compression index, swelling index and the initial void ratio ' The relationship between these
parameters and the compression index, Cg, is given by:

2.3(1+ ng Te
C - (1 + €init)Pref

c 7 (6-20)
Eoed
The relationship between the E,, "l and the swelling index, Cs, is given by:
-~ 23(1 + einit)(l + VUT)(]- - 2Vu7‘)pref
* (6-21)

<]- - Vur) E;:fKO

© Note: For the relation between Ef and C; PLAXIS assumes that the soil is only lightly
overconsolidated, hence Ko = K{° is used.

Regardless the previous value of E5g, a new value will be automatically assigned according to:

El =1.25E7 (6-22)

oed

1 In the PLAXIS material database, these alternative parameters depend on the initial void ratio. In
reality, these parameters depend on the actual void ratio, which is not a constant.
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Although for Soft soils, Eggf could be as high as 2 E*¢, this high value could lead to a numerical

oed!

instability; therefore a lower value is used. Changing the value of Cs will change the stiffness
parameter Ef,

Note that the value of the power for stress-level dependency of stiffness (m) is automatically set
to 1.

6.4.3 | Advanced parameters

Realistic values of v, are about 0.2 and this value is thus used as a default setting, as indicated
in Figure 6-4 (p. 71). Note that in the Hardening Soil model, v,, is a pure elastic parameter.

In contrast to the isotropic elasticity, Ko is not simply a function of Poisson's ratio, but an
independent input parameter. As a default setting PLAXIS uses the correlation K¢ = 1-sin
@. It is suggested to maintain this value as the correlation is quite realistic. However, users
do have the possibility to select different values. Not all possible input values for Ky can be

accommodated for. Depending on other parameters, such as E;gf, Eret Ef and v, there

oed!
happens to be a certain range of valid Ky“-values. Kq° values outside this range are rejected by
PLAXIS. On inputting values, the program shows the nearest possible value that will be used in
the computations.

6.4.4 | Dilatancy cut-off

After extensive shearing, dilating materials may reach a state of critical density where dilatancy

has come to an end, as indicated in Figure 6-7 (p. 76). This phenomenon of soil behaviour

can be included in the Hardening Soil model by means of a dilatancy cut-off. In order to specify

this cut-off limit, the initial void ratio, ejnjt, and the maximum void ratio, enqy, of the material must
be entered as general parameters. As soon as the volume change results in a state of maximum
void ratio, the mobilised dilatancy angle, ¢, is automatically set back to zero, as indicated in

Figure 6-7 (p. 76).

fO’f' € < emax sin ("ﬁm) = %
sin(y)—sin(¢) o723
where : sin (SDcv) = m

for e>emax Ym =0 (6-24)

The void ratio is related to the volumetric strain, €, by the relationship:

iy 1+e
v — it :1 - = _
(=) =m(ees) 629

where an increment of g, is positive for dilatancy.
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Figure 6-7: Resulting strain curve for a standard
drained triaxial test when including dilatancy cut-off

The selection of the Dilatancy cut-off is only available when the Hardening Soil model or the
Hardening Soil model with small-strain stiffness has been selected. By default, the Dilatancy
cut-off is not active. Note that the dilatancy cut-off does not help in limiting the shear strength
when using the Undrained A drainage type with a positive dilatancy angle. This is because the
void ratio remains constant for undrained materials. Therefore, it is strongly recommended to set
Y = 0 for undrained material behaviour (Undrained A).

6.5 On the cap yield surface in the
Hardening Soil model

Shear hardening yield surfaces as indicated in Figure 6-2 (p. 69) do not explain the plastic
volume strain that is measured in isotropic compression which is mostly observed in softer types
of soil. A second type of yield surface must therefore be introduced to close the elastic region
for compressive (compaction hardening) stress paths. Without such a cap type yield surface it

would not be possible to formulate a model with independent input of both Eggf and E™!. The

oed*

triaxial modulus largely controls the shear yield surface and the oedometer modulus controls

the cap yield surface. In fact, E;Sf largely controls the magnitude of the plastic strains that

are associated with the shear yield surface. Similarly, E;:(’; is used to control the magnitude of

plastic strains that originate from the yield cap. In this section the yield cap will be described in
detail. To this end we consider the definition of the cap yield surface:

fo= -+ ()’ P2 (6-26)

where

~2
g
M?2

M auxiliary model parameter that relates to K (discussed later in section).

Furthermore we have:

p'=(c'1+0'5+0'3)/3and G =-0'1- (a-1)c's + ac's with a = (3 + sing) / (3 - sing). G isa
special stress measure for deviatoric stresses.

In the special case of triaxial compression (- 'y > -0', = -0'3) it yields § = -(0'; - 0'3) and for
triaxial extension (-o'y = -0', > -0'3) G reduces to = -0(c';-0'3). The magnitude of the yield
cap is determined by the isotropic pre-consolidation stress p, (i.e. the hardening parameter
associated with this yield surface). In a (p’, ¢) plane, the yield cap (f. = 0) is a part of an ellipse
with its centre point in the origin (Figure 6-8 (p. 78)). The hardening law relating pp to
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volumetric cap strain €2° in primary drained isotropic compression and assuming P» as positive
for compression can be described by:

e Ks/K.—1 + ccot e
ere _ Ko/ K ( Py (¥) ) b, (6-27)
K:ef pref + ccot (p)

in which K7¢/ is the reference bulk modulus in unloading / reloading:

E/
K;‘ef _ (6—28)
3(1 —2vy,)

and K¢/K. is the ratio of bulk moduli in isotropic swelling and primary isotropic compression.

The volumetric cap strain is the plastic volumetric strain in isotropic compression. In addition to

the well known constants m and pref there is another model constant Ky/K.. Both M ( Eqn. 6-
26 (p. 76) ) and K¢/K. ( Eqn. 6-27 (p. 77) ) are cap parameters, but these are not used as
direct input parameters. Instead, there is a relationship of the form:

M « Kj° (default : Kj¢=1—sin(p)) (6-29)
and the ratio K¢/K can be approximated as:
ref ne
E, K
K,/ K, ~ 0 (6-30)

E™ (1+2K7°) (1 - 2vy,)

oed

such that K¢, EI¢/ and E:;f can be used as input parameters that determine the magnitude of
M and K¢ /K. respectively. M is determined by finding the correct steepness of the cap for the

K path in the similar way as is done for the Soft Soil model K 0 n ¢ -parameter (p. 115), see
Eqgn. 10-13 (p. 115) .

The ellipse on which the yield cap is located has length p, on the p-axis and M p,, on the ¢-axis.
Hence, p, determines its magnitude and M its aspect ratio. High values of M lead to steep caps
underneath the Mohr-Coulomb line and correspondingly small K¢ “-values, whereas small M-
values define caps that are much more pointed around the p-axis leading to large Ky“-values.
The ellipse is used both as a yield surface and as a plastic potential (associated plasticity).

Input data on initial p,-values is provided by means of the PLAXIS procedure for initial stresses.
Here, p, is either computed from the input overconsolidation ratio (OCR) or the pre-overburden
pressure (POP) (see 2.9 On the initial stresses (p. 29)).
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Figure 6-8: Yield surfaces of in p - § -plane. The elastic
region can be further reduced by means of a tension cut-off

03

Figure 6-9: Representation of total yield contour of the Hardening
Soil model in principal stress space for cohesionless soil

For understanding the yield surfaces in full detail, one should consider both Figure 6-8 (p.

78) and Figure 6-9 (p. 78). The first figure shows simple yield lines, whereas the second

one depicts yield surfaces in principal stress space. Both the shear locus and the yield cap
have the hexagonal shape of the classical Mohr-Coulomb failure criterion. In fact, the shear
yield locus can expand up to the ultimate Mohr-Coulomb failure surface. The cap yield surface
expands as a function of the pre-consolidation stress pp.
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6.6 | State parameters in the Hardening Soil
model

In addition to the output of standard stress and strain quantities, the Hardening Soil model
provides output (when being used) on state variables such as the hardening parameters:
equivalent mobilised plastic shear strain y* and the isotropic pre-consolidation stress Pp- These

parameters can be visualised by selecting the State parameters option from the stresses menu.
An overview of available state parameters is given below:

Equivalent isotropic stress
Pea Peg =/ 1r + (1)’ ]
Pp Isotropic pre-consolidation stress [kN/m? ]
OCR Isotropic overconsolidation ratio (OCR = pP/p®? ) [-]
v’ Equivalent mobilised plastic shear strain [-]
E,r Current stress-dependent elastic Young's modulus [kN/m2 |
c Current depth-dependent cohesion [kN/m2 ]

6.7 On the use of the Hardening Soil model
in dynamics calculations

When using the Hardening Soil model in dynamics calculations, the elastic stiffness parameter

E¢/ needs to be selected such that the model correctly predicts wave velocities in the soil. This
generally requires an even larger small strain stiffness rather than just an unloading-reloading

stiffness to be entered for E;‘”:f. When subjected to dynamic or cyclic loading, the Hardening
Soil model will generate plastic strains when mobilizing the soil's material strength (shear
hardening) or increasing the soil's preconsolidation stress (compaction hardening). However,
it should be noted that stress cycles within the current hardening contours will only generate
elastic strains and no (hysteretic) damping, nor accumulation of strains or pore pressure nor
liquefaction. In order to simulate the soil's damping characteristics in cyclic loading, Rayleigh
damping may be defined. Note that some of the limitations of the Hardening Soil model in
dynamic applications can be overcome by using the Hardening Soil model with small-strain
stiffness (7 The Hardening Soil model with small-strain stiffness (HSsmall) (p. 80)).
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The Hardening Soil model with small-
strain stiffness (HSsmall)

The original Hardening Soil model assumes elastic material behaviour during unloading and
reloading. However, the strain range in which soils can be considered truly elastic, i.e. where
they recover from applied straining almost completely, is very small. With increasing strain
amplitude, soil stiffness decays nonlinearly. Plotting soil stiffness against log(strain) yields
characteristic S-shaped stiffness reduction curves. Figure 7-1 (p. 81) gives an example of

such a stiffness reduction curve. It outlines also the characteristic shear strains that can be
measured near geotechnical structures and the applicable strain ranges of laboratory tests.

It turns out that at the minimum strain which can be reliably measured in classical laboratory
tests, i.e. triaxial tests and oedometer tests without special instrumentation, soil stiffness is often
decreased to less than half its initial value.
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Figure 7-1: Characteristic stiffness-strain behaviour of soil with typical strain
ranges for laboratory tests and structures (after Atkinson & Sallfors,1991)

The soil stiffness that should be used in the analysis of geotechnical structures is not the one
that relates to the strain range at the end of construction according to Figure 7-1 (p. 81).

Instead, very small-strain soil stiffness and its non-linear dependency on strain amplitude
should be properly taken into account. In addition to all features of the Hardening Soil model, the
Hardening Soil model with small-strain stiffness offers the possibility to do so.

The Hardening Soil model with small-strain stiffness implemented in PLAXIS is based on the
Hardening Soil model and uses almost entirely the same parameters (see 6.4 Parameters of the
Hardening Soil Model (p. 71)). In fact, only two additional parameters are needed to describe the
variation of stiffness with strain:

® the initial or very small-strain shear modulus G.
® the shear strain level yp 7 at which the secant shear modulus G, is reduced to about 70% of
Go.

7.1/ Describing small-strain stiffness with a
Simple Hyperbolic Law

In soil dynamics, small-strain stiffness has been a well known characteristic of soil behaviour for
a long time. In static analysis, the findings from soil dynamics have long been considered not to
be applicable.

Seeming differences between static and dynamic soil stiffness have been attributed to the
nature of loading (e.qg. inertia forces and strain rate effects) rather than to the magnitude of
applied strain which is generally small in dynamic conditions (earthquakes excluded). As inertia
forces and strain rate have only little influence on the initial soil stiffness, dynamic soil stiffness
and small-strain stiffness can in fact be considered as synonyms.

Probably the most frequently used model in soil dynamics is the Hardin-Drnevich relationship.
From test data, sufficient agreement is found that the stress-strain curve for small strains can be
adequately described by a simple hyperbolic law. The following analogy to the hyperbolic law for
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larger strains by Konder (1963) (see 6 The Hardening Soil model (Isotropic hardening) (p. 65) )
was proposed by Hardin & Drnevich(1972):

Gs 1
[ 7
o 14|
where the threshold shear strain y, is quantified as:
_ Tmax 2
Yr Gy (7-2)

with T4 being the shear stress at failure. Essentially, Eqn. 7-1 (p. 82) and Eqgn. 7-2 (p.
82) relate large (failure) strains to small-strain properties which often work well.

More straightforward and less prone to error is the use of a smaller threshold shear strain.
Santos & Correia (2001), for example suggest to use the shear strain y, = yo 7 at which the secant

shear modulus G; is reduced to about 70 % of its initial value. Eqn. 7-1 (p. 82) can then be
rewritten as:

G, 1
-

Go  1ia2|
0 1+a’Yo.7

In fact, using a = 0.385 and y = y.7 gives Gs/Gg = 0.722. Hence, the formulation "about 70%"
should be interpreted more accurately as 72.2%.

Figure 7-2 (p. 82) shows the fit of the modified Hardin-Drnevich relationship ( Eqn. 7-3 (p.
82) ) to normalised test data.

where a = 0.385 (7-3)
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Figure 7-2: Results from the Hardin-Drnevich relationship
compared to test data by Santos & Correia (2001)
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7.2 Applying the Hardin-Drnevich
relationship in the HS Model

The decay of soil stiffness from small strains to larger strains can be associated with loss of
intermolecular and surface forces within the soil skeleton. Once the direction of loading is
reversed, the stiffness regains a maximum recoverable value which is in the order of the initial
soil stiffness. Then, while loading in the reversed direction is continued, the stiffness decreases
again. A strain history dependent, multi-axial extension of the Hardin-Drnevich relationship is
therefore needed in order to apply it in the Hardening Soil model. Such an extension has been
proposed by Benz (20086) in the form of the small-strain overlay model. Benz derives a scalar
valued shear strain yp;s: by the following projection:

| HAe||
Yhist = V3—— (7-4)
| Ael
where
Ae = Actual deviatoric strain increment.
H = Symmetric tensor that represents the deviatoric strain history of the material.

Whenever a strain reversal is detected the tensor H is partially or fully reset before the actual
strain increment Ae is added.

As the criterion for strain reversals serves a criterion similar as in Simpson's brick model (1992):
All three principal deviatoric strain directions are checked for strain reversals separately which
resembles three independent brick models. When there is no principal strain rotation, the
criterion reduces to two independent brick-models. For further details on the strain tensor H
and its transformation at changes in the load path it is referred to Benz (2006).

The scalar valued shear strain y = ypjs; calculated in Eqn. 7-4 (p. 83) is applied subsequently
used in Egn. 7-3 (p. 82) . Note that in both, Eqn. 7-3 (p. 82) and Egn. 7-4 (p. 83) , the
scalar valued shear strain is defined as:

3

Y= Eeq (7-5)

where

&q = Second deviatoric strain invariant General definitions of strain

In triaxial conditions y can therefore be expressed as:
Y = Eazial — Elateral (7-6)

Within the Hardening Soil model with small-strain stiffness, the stress-strain relationship can be
simply formulated from the secant shear modulus ( Egn. 7-3 (p. 82) ) as:

Goy

T=Gsy= ——— -
7T T 0385 (7=7)
Yo.7
Taking the derivative with respect to the shear strain gives the tangent shear modulus:
Gy
Ge= 7-8)

2
(1 T 0.385L)
Yo.7

7.2 Applying the Hardin-Drnevich relationship in the HS Model | 83



This stiffness reduction curve reaches far into the plastic material domain. In the Hardening

Soil model and Hardening Soil model with small-strain stiffness, stiffness degradation due to
plastic straining is simulated with strain hardening. In the Hardening Soil model with small-strain
stiffness, the small-strain stiffness reduction curve is therefore bound by a certain lower limit,
determined by conventional laboratory tests:

* The lower cut-off of the tangent shear modulus G; is introduced at the unloading reloading
stiffness G, which is defined by the material parameters E,, and v,

Gi > Gy where Gy = 2(1]”;“;“0 and G; = 2(113)1") (7-9)
® The cut-off shear strain yc,tof Can be calculated as:
1 G
= — 1) vz (7-10)

Yeut—off = 0.385 G
. ur

Within the Hardening Soil model with small-strain stiffness, the quasi-elastic tangent shear
modulus is calculated by integrating the secant stiffness modulus reduction curve over the
actual shear strain increment. An example of a stiffness reduction curve used in the Hardening
Soil model with small-strain stiffness is shown in Figure 7-3 (p. 84).
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Figure 7-3: Secant and tangent shear modulus reduction curve

Moreover, the tangent shear modulus G; and corresponding Young's modulus E; (considering
a constant Poisson's ratio v,,), is stress-dependent, and follows the same power law as
formulated in Eqn. 6-7 (p. 67) . For primary loading situations, the model uses the same
hardening plasticity formulations as the Hardening Soil model, where E,, is replaced by E; as

described above.

7.3 ' Virgin (initial) loading vs unloading/
reloading

Masing (1926) described the hysteretic behaviour of materials in unloading / reloading cycles in
the form of the following rules:

* The shear modulus in unloading is equal to the initial tangent modulus for the initial loading
curve.
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* The shape of the unloading and reloading curves is equal to the initial loading curve, but
twice stiffer. In terms of the above introduced threshold shear strain y, 7, Masing's rule can
be fulfilled by the following setting in the Hardin-Drnevich relation:

Y0.7re—loading = 270.7virginfloading (7—1 1)

Figure 7-4 (p. 85) and Figure 7-5 (p. 86) illustrate Masing's rule and the secant stiffness
reduction in virgin loading and unloading / reloading.

The Hardening Soil model with small-strain stiffness adopts Masing's rule. According to it, the
threshold shear strain and the reloading curve are obtained by scaling the backbone curve
(virgin loading) by a factor of 2. Note, however, that in this constitutive model, the hardening
plasticity accounts for more rapidly decaying small-strain stiffness during virgin loading.
Consequently, the unloading / reloading response - which will be, at least partly, purely elastic
- will be naturally stiffer than virgin (i.e. elasto-plastic) loading. As such, the scaling factor for
the threshold shear strain is assumed to be constant and equal to 2 (as presented in Eqn. 7-11
(p. 85)) throughout loading. This is different from what is often assumed by other constitutive
models incorporating a small strain component, where the scaling factor is initialised to 1and
changed to 2 once a first strain reversal is detected. As mentioned earlier, this is not necessary
in HS-small, as the modeled response will be generally elasto-plastic from the start of shearing,
unless a deviatoric pre-loading is applied beforehand.
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Figure 7-4: Hysteretic material behaviour
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Figure 7-5: Stiffness reduction in initial -or primary loading and in unloading/reloading

/7.4 Model Parameters

Compared to the standard Hardening Soil model, the Hardening Soil model with small-
strain stiffness requires two additional stiffness parameters as input: Ggef and yo. 7. All other
parameters, including the alternative stiffness parameters, remain the same as in the standard

Hardening Soil model. Ggef defines the shear modulus at very small strains e.g. € < 10 ® ata

reference minor principal stress of - g'3 = p'ef.

The Poisson's ratio v, is assumed a constant, so that the shear modulus Ggef can also be
calculated from the very small strain Young's modulus as:

G = B}/ (2(1 + uu)) (7-12)
The threshold shear strain yg 7 is the shear strain at which the secant shear modulus G’;ef is

decayed to 0.722 Ggef . The threshold shear strain yg ; is to be supplied for virgin loading. In
summary, the input stiffness parameters of the Hardening Soil model with small-strain stiffness
are listed below:

m Power for stress-level dependency of stiffness [-]
Eggf Secant stiffness in standard drained triaxial test [KN/mz]
ref Reference tangent stiffness for primary oedometer 2
Boed loading [KN/m~ ]

Reference unloading / reloading stiffness from drained
ref 2
Euy triaxial test [KN/m™]
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vo.7 Poisson's ratio for unloading-reloading [-]
Ggef Reference shear modulus at very small strains (g < 10°) [KN/m?]
Yo.7 Threshold shear strain at which G5 = 0.722G, [-]

Figure 7-6 (p. 87) illustrates the model's stiffness parameters in a drained triaxial test:

Eso, Eur, and Eg = 2Go(1 + vy,). For the order of strains at which E,, and G, are defined and
determined, one may refer to e.g. Figure 7-1 (p. 81) and Figure 7-2 (p. 82).

01— 03

q:

&1

Figure 7-6: Stiffness parameters Esg, E,,, and Eg = 2Go (1 + v,,) of
the Hardening Soil model with small-strain stiffness in a triaxial test

Figure 7-7 (p. 88) illustrates the model's stiffness parameters in a stress-controlled drained

cyclic shear test.
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Figure 7-7: Stiffness parameters in cyclic shear test

For quartz sand, a first estimation of the HSsmall parameters is based on the relative density
(RD) is given in Brinkgreve, Engin & Engin (2010).

7.5 0n the parameters Gg and yg

A number of factors influence the small-strain parameters Gy and yg 7. Most importantly they are

influenced by the material's actual state of stress and void ratio e. In the Hardening Soil model
with small-strain stiffness, the stress dependency of the shear modulus Gy is taken into account
with the power law:

- GM( ccos (ip) — o sin(p) )’"
0"\ ccos () + p7 sin(p)

(7-13)

which resembles the ones used for the other stiffness parameters. The threshold shear strain
Yo.7 is taken independently of the mean stress.

Assuming that within a Hardening Soil model with small-strain stiffness (or HS) computation void
ratio changes are rather small, the material parameters are not updated for changes in the void
ratio. Knowledge of a material's initial void ratio can nevertheless be very helpful in deriving its
small-strain shear stiffness Go. Many correlations are offered in the literature (Benz, 2006). A

good estimation for many soils is for example the relation given by Hardin & Black (1969):

Gyl ~ 3,285 [MPa| for p/ =100[kPa] (7-14)

Alpan (1970) empirically related dynamic soil stiffness to static soil stiffness (Figure 7-8 (p.
89)). The dynamic soil stiffness in Alpan's chart is equivalent to the small-strain stiffness
Gy or Ep. Considering that the static stiffness Eg1ic defined by Alpan equals approximately the

unloading / reloading stiffness E, in the Hardening Soil model with small-strain stiffness, Alpan's
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chart can be used to guess a soil's small-strain stiffness entirely based on its unloading /
reloading stiffness E,,. Although Alpan suggests that the ratio Ey / E,, can exceed 10 for very soft

clays, the maximum ratio Ep / E,r or Go / G, permitted in the HSsmall model is limited to 20.
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Figure 7-8: Relation between dynamic (E4 = E))
and static soil stiffness (Es = E,,) after Alpan(1970)
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Figure 7-9: Influence of plasticity index (PI) on
stiffness reduction after Vucetic & Dobry (1991)

In the absence of test data, correlations are also available for the threshold shear strain yg ;.

Figure 7-9 (p. 89) for example gives a correlation between the threshold shear strain and
the Plasticity Index. Using the original Hardin-Drnevich relationship, the threshold shear strain
Yo.7 might be also related to the model's failure parameters. Applying the Mohr-Coulomb failure

criterion in Egn. 7-2 (p. 82) and Egn. 7-3 (p. 82) yields:

Yo & gé [2¢/ (1 + cos(2¢)) — o (1 + Ko) sin (2¢') ] (7-15)

where
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Ko The earth pressure coefficient at rest.

Q
1

The effective vertical stress (pressure negative).

7.6  Model Initialisation

Stress relaxation erases soil's memory of previous applied stress. Soil aging in the form of
particle (or assembly) reorganization during stress relaxation and formation of bonds between
them can erase soil's strain history. Considering that the second process in a naturally deposited
soil develops relatively fast, the strain history should start from zero ( H) in most boundary value
problems. This is the default setting in the Hardening Soil model with small-strain stiffness.

However, sometimes an initial strain history may be desired. In this case the strain history can
be adjusted by applying an extra load step before starting the actual analysis. Such an additional
load step might also be used to model overconsolidated soils. Usually the overconsolidation's
cause has vanished long before the start of calculation, so that the strain history should be

reset afterwards. Unfortunately, strain history is already triggered by adding and removing a
surcharge. In this case the strain history can be reset manually, by using the Reset small strain
option in the calculation phases window. Also, when resetting displacements to zero, the strain
history tensor is reset and the influence of strains from previous calculation phases is ignored.

When using the Hardening Soil model with small-strain stiffness, caution should be given

to nil-steps. The strain increments in nil-steps are purely derived from the small numerical
unbalance in the system which is due to the accepted tolerated error in the computation. The
strain increment direction in nil-steps is therefore arbitrary. Hence, a nil-step may function as
randomly reverse load step which is in most cases not desired.

7.7 | State parameters in the Hardening Soil
model with small-strain stiffness

In addition to the output of standard stress and strain quantities, the Hardening Soil model with
small-strain stiffness provides output on State variables. These parameters can be visualised
by selecting the State parameters option from the stresses menu. An overview of available state
parameters in addition to those listed for the Hardening Soil model is given below:

P Strain history parameter used in strain-dependent [-]
ey stiffness formulation

e -g Strain history parameter used in strain-dependent [-]
yyo©v stiffness formulation

e - g Strain history parameter used in strain-dependent [-]
2z stiffness formulation

e Strain history parameter used in strain-dependent [-]
Xy stiffness formulation

e Strain history parameter used in strain-dependent [-]
yz stiffness formulation

e Strain history parameter used in strain-dependent [-]
2 stiffness formulation
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Gs ref Secant shear modulus at reference stress level [kN/m? ]

Minimum ever registered value of the ratio of the
G/G,, primary shear stiffness modulus to the unloading- [-]
reloading shear stiffness modulus

7.8  On the use of the Hardening Soil model
with small-strain stiffness in dynamics
calculations

In contrast to the Hardening Soil model, the Hardening Soil model with small-strain stiffness
shows hysteresis in cyclic loading (Figure 7-6 (p. 87)). The amount of hysteresis depends

on the magnitude of the corresponding strain amplitude. However, note that due to the isotropic
hardening nature of the plastic component, the model does not generate accumulated strains
with multiple loading cycles, nor does it generate accumulated pore pressures with undrained
behaviour. When the Hardening Soil model with small-strain stiffness is used wave velocities are
not shown because they vary due to the stress-dependent stiffness.

When applied in dynamics calculations, the hysteretic behaviour of the Hardening Soil model
with small-strain stiffness leads to damping. The amount of hysteretic damping depends on the
applied load amplitude and corresponding strain amplitudes. The maximum amount of hysteretic
damping obtained with the Hardening Soil model with small-strain stiffness depends on the ratio
of Goto Gur = Eur/2(1 + vyr) . A larger ratio leads to a larger maximum amount of hysteretic
damping. For more information about the hysteretic damping in the Hardening Soil model with
small-strain stiffness reference refer to Brinkgreve, Kappert & Bonnier (2007).

7.9 | Other differences to the Hardening Soil
model

7.9.1! The mobilised dilatancy angle

The shear hardening flow rule of both the Hardening Soil model and the Hardening Soil model
with small-strain stiffness have the linear form:

&P = sin (Y )5” (7-16)

However, the mobilised dilatancy angle @, in compression is defined differently. The HS model
assumes the following:

For sin(p,,) < 3sin (y) Ym =0
For sin(¢y,) < 3sin(p) and ¢ >0 sin (¢Ym) = max(%, O) (7-17)
For sin(cpm) < %sin(go) and Y<0 Y, =v¢
If p=0 Ym =0
Pev = Critical state friction angle, being a material constant independent of density.
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Pm The mobilised friction angle.

sin( ¢ | = 1= (7-18)
o) + 0% — 2ccot (¢)

g
=>

Pm

2 4

3 J

Figure 7-10: Plot of mobilised dilatancy angle g, and mobilized
friction angle ¢, for Hardening Soil model with small-strain stiffness

For small mobilised friction angles and for negative values of y,,, as computed by Rowe's
formula, Y, in the Hardening Soil model is taken zero. Bounding the lower value of {,;, may
sometimes yield too little plastic volumetric strains though. Therefore, the Hardening Soil

model with small-strain stiffness adapts an approach by Li & Dafalias (2000) whenever ¢, as
computed by Rowe's formula, is negative. In that case, the mobilised dilatancy in the Hardening
Soil model with small-strain stiffness is calculated by the following equation:

. 1 1 M
sin (1/)m> = o (—Mcewp [ﬁln< M: qia)] + Md> (7-19)
where:
6 sin
M. = ﬂ (7-20)
3 — sin (o)
6 sin (©m)
M= ———— —
7 3 sin (om) (7-21)
1o« .
1 _ max .sm () . sml(gom) ,1074 (7-22)
Qa sin (@ey) 1 —sin (¢m)
And the mobilised friction angle is limited to:
sin
sin (o) > —S0l0) (7-23)
2 —sin (p)

The mobilised dilatancy as a function of ¢, for the Hardening Soil model with small-strain
stiffness is visualised in Figure 7-10 (p. 92) for the specific case of ¢=35° and Y=5°.
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Modified Cam-Clay model

The Modified Cam-Clay model is described in several textbooks on critical state soil mechanics
(for example Muir Wood (1990)). In this chapter a short overview is given of the basic equations.

8.1 Formulation of the Modified Cam-Clay
model

In the Modified Cam-Clay model, a logarithmic relation is assumed between void ratio e and the
mean effective stress p' in virgin isotropic compression, which can be formulated as:

e—eoz—)\ln<p

!/

—O> (virgin isotropic compression) (8-1)
p

The parameter A is the Cam-Clay isotropic compression index, which determines the
compressibility of the material in primary loading. When plotting relation ( Eqn. 8-1 (p. 93) ) in

a e - In p' diagram one obtains a straight line. During unloading and reloading, a different line is
followed, which can be formulated as:

!/
e —e = —klin (p_()) (isotropic unloading and reloading) (8-2)
p
The parameter k is the Cam-Clay isotropic swelling index, which determines the compressibility
of material in unloading and reloading. In fact, an infinite number of unloading and reloading
lines exists in p' - e-plane each corresponding to a particular value of the pre-consolidation

stress pp.

The yield function of the Modified Cam-Clay model is defined as:



2
f= % +p'(p' — pp) (8-3)

The yield surface (f = 0) represents an ellipse in p' - g-plane as indicated in Figure 8-1 (p.
94). The yield surface is the boundary of the elastic stress states. Stress paths within this
boundary only give elastic strain increments, whereas stress paths that tend to cross the
boundary generally give both elastic and plastic strain increments.

In p'-q - plane, the top of the ellipse intersects a line that we can be written as:

q = Mp' (8-4)
This line is called the critical state line (CSL) and gives the relation between p' and g in a state
of failure (i.e. the critical state). The constant M is the tangent of the critical state line and
determines the extent to which the ultimate deviatoric stress, g, depends on the mean effective
stress, p'. Hence, M can be regarded as a friction constant. Moreover, M determines the shape
of the yield surface (height of the ellipse) and influences the coefficient of lateral earth pressure
K §° in a normally consolidated stress state under conditions of one-dimensional compression.

Critical State Line
q 4 2

, 'wet side'

nc .
Ko - line

Pr p
Figure 8-1: Yield surface of the of the Modified Cam-Clay model in p'-q - plane

The preconsolidation stress, pp, determines the size of the ellipse. In fact, an infinite number of
ellipses exist, each corresponding to a particular value of pp,.

The left hand side of the yield ellipse (often described as the 'dry side' of the critical state line)
may be thought of as a failure surface. In this region plastic yielding is associated with softening,
and therefore failure. The values of q can become unrealistically large in this region.

For more detailed information on Cam-Clay type models, the reader is referred to Muir Wood
(1990).

© Note:

Note that the Modified Cam-Clay model model as implemented in PLAXIS gives a
Druger-Prager failure state instead of a Mohr-Coulomb model type of failure.

8.2 | Parameters of the Modified Cam-Clay
model

The Modified Cam-Clay model is based on the following parameters:
* Parameters for stiffness:
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A Cam-Clay compression index [-]
K Cam-Clay swelling index [-]
Vur Poisson's ratio [-]
€init Initial void ratio for loading/unloading [-]

* Parameters for strength:

M Tangent of the critical state line [-]

Coefficient of lateral stress in normal consolidation

Kne derived from M. The relationship between M and Ky* -]
0 is given in the Material Models Manual - Soft soil creep

Model - Parameters of the soft soil creep model.

8.2.1/ Compression index and swelling index

These parameters can be obtained from an isotropic compression test including isotropic
unloading. When plotting the natural logarithm of the mean stress as a function of the void ratio
for clay-type materials, the plot can be approximated by two straight lines. The slope of the
primary loading line gives the compression index and the slope of the unloading line gives the
swelling index. These parameters can be obtained from a one-dimensional compression test, as
discussed in 10.3 Parameters of the Soft Soil model (p. 112).

8.2.2 Poisson's Ratio

Poisson's ratio v, is a real elastic parameter and not a pseudo-elasticity constant as used in the
Mohr-Coulomb model. Its value will usually be in the range between 0.1and 0.2.

8.2.3 | Tangent of the critical state line

In order to obtain the correct shear strength, the parameter M should be based on the friction
angle . The critical state line is comparable with the Drucker-Prager failure line, and represents
a (circular) cone in principal stress space. Hence, the value of M can be obtained from ¢:

6si
M = ?’sﬂ (for initial compression stress states) (o] < o5 = 0%) (8-5)
— sing
6 ; 7 2 K
= % (for initial compression stress states) (o, = o, < 03) (8-6)
M ~ V/3sinp (for plane strain stress states) (8-7)

In addition to determining the shear strength, the parameter M has an important influence on

the value of the coefficient of lateral earth pressure, K, in a state of normal consolidation.
In general, when M is chosen such that the model predicts the correct shearing strength, the

resulting value of K“ is too high.

8.3 | State parameters in the Modified Cam-
Clay model

In addition to the output of standard stress and strain, the Modified Cam-Clay model provides
output (when being used) on state variables such as the isotropic pre-consolidation stress p,,
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and the isotropic overconsolidation ration OCR. These parameters can be visualised by selecting
the State parameters option from the Stresses menu. An overview of available state parameters
is given below:

Peq Equivalent isotropic stress. [kN/mZ]

/ ¢
Peq =p + My

Pp Isotropic preconsolidation stress [KN/m?]

OCR

Isotropic overconsolidation ratio (OCR = pP/p°?) [-]

8.4 On the use of the Modified Cam-Clay
model in dynamics calculations

When using the Modified Cam-Clay model in dynamics calculations, the swelling index k needs
to be selected such that the model correctly predicts wave velocities in the soil. This generally
requires a smaller value than just an unloading-reloading index.

When subjected to dynamic or cyclic loading, the Modified Cam-Clay model will generate plastic
strains when the preconsolidation stress is increased. However, it should be noted that stress
cycles within the current creep contour will only generate elastic strains and no (hysteretic)
damping, nor accumulation of strains or pore pressure, nor liquefaction. In order to account for
the soil damping in cyclic loading, Rayleigh damping may be defined.

8.5 Warning

The Modified Cam-Clay model may allow for extremely large shear stresses. This is particularly
the case for stress paths that cross the critical state line. Furthermore, the Modified Cam-Clay
model may give softening behaviour for particular stress paths. Without special regularization
techniques, softening behaviour may lead to mesh dependency and convergence problems of
iterative procedures. Moreover, the Modified Cam-Clay model cannot be used in combination
with Safety analysis by means of phi-c reduction. The use of the Modified Cam-Clay model in
practical applications is not recommended.
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The NGI-ADP model (anisotropic
undrained shear strength)

The NGI-ADP model may be used for capacity, deformation and soil-structure interaction
analyses involving undrained loading of clay. The basis of the material model is:

* Input parameters for (undrained) shear strength for three different stress paths/ states
(Active, Direct Simple Shear, Passive).

* Avyield criterion based on a translated approximated Tresca criterion.

* Elliptical interpolation functions for plastic failure strains and for shear strengths in arbitrary
stress paths.

* |sotropic elasticity, given by the unloading/reloading shear modulus, G

9.1 Formulation of the NGI-ADP model

The NGI-ADP model is formulated for a general stress state, matching both undrained failure
shear strengths and strains to that of selected design profiles (Andresen & Jostad, 1999 ;
Andresen, 2002 ; Grimstad, Andresen & Jostad, 2010 ). The model formulation is presented in
steps, starting with 1D anisotropy in triaxial test condition. In The NGI-ADP model in plane strain
a simplified expression for plane strain is presented. Thereafter the formulation is extended to
full 3D stress state. In this formulation compressive stresses are positive.

In the NGI-ADP model the Tresca approximation after Billington (1988) together with a modified
von Mises plastic potential function (von Mises, 1913 ) is used to circumvent the possible corner
problems. The yield and plastic potential function are independent of the mean stress hence
zero plastic volume strain develops.
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9.1.1/1D model presentation

Under triaxial tests condition two undrained shear strengths can be determined, i.e. suc and

suE . The test measures the response in vertical stress o', and horizontal stress o'y, for applied

shear strain y. The Tresca yield criteria can be modified, Eqgn. 9-1 (p. 98), to account for the
difference in undrained shear strength in compression and extension:

f= (T(lﬁ)Tol‘ésg%)ﬁsg#:O (9-1)
where

T = Shear stress defined as T = 0.5(0",, - 0'p)

To = Initial in situ maximum shear stress defined as

70 = 0.5(07 — 03) = 0-5(1 — Ko)

To account for difference in failure shear strain a stress path dependent hardening parameter
is introduced. The stress path dependent hardening is made possible by different plastic failure

shear strain yfp in compression and extension. The hardening function is given by:

P/ 7§
Kk = 2—————; when ¥ < 71}’; else k=1 (9-2)
1+ 7p/7f
7P = Plastic shear strain.
Vfc) = Failure (peak) plastic shear strain.

stress path / stress-strain

des — line

TXC .
Kg — line

%{m — o3

Tmax
g
i
AR
J
i
/ :
i i
i .
/

Figure 9-1: Typical stress paths and stress strain
curves for triaxial compression and triaxial extension
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9.1.2 The NGI-ADP model in plane strain

The yield criterion for the NGI-ADP model in plane strain is defined by:

2

Oy — O sA — sP\? sA 5P s4 4 sP

f: (%—(1—/@)7‘0—R%> + sz# —R%ZO (9-3)
Uu

Restriction to clays with horizontal surfaces are made to simplify the presentation. Further y

is taken as the vertical (depositional) direction. For isotropy in hardening (i.e. k independent

of stress orientation) plots as an elliptical shaped curve in a plane strain deviatoric stress

plot. When k equals 1.0, the criterion in Eqn. 9-3 (p. 99) reduces to the formulation given by
Davis & Christian (1971). While hardening the yield curves are characterised by slightly distorted
elliptical shapes. The shape is dependent on the interpolation function used and values of failure
strain. The NGI-ADP model uses elliptical interpolation between failure strain in passive stress
state, direct simple shear and active stress state. In the implementation of the NGI-ADP model
the yield surface is ensured to remain convex by restricting the input.

0.5 '[Gj.-g.'-._ﬁﬁ\-* ) Sy '

Figure 9-2: Typical deviatoric plane strain plot of
equal shear strain contours for the NGI-ADP model

9.1.3! The NGI-ADP model in 3D stress space

This section describes the actual implementation of the NGI-ADP model in PLAXIS, whereas the
previous sections should be regarded as an introduction using simplified formulation. For the
general stress condition a modified deviatoric stress vector is defined as:

N ! / 1 A P fon
Szx o-zw_o-sz(l_K)+K§(su _Su) -p
! / 2 A P =
Ty~ (1= K) — K3 (0 —5,) =P
S ! / 1 A P =~
v O'zz_UzzO(l_K’)—}_K’g(su _Su) - D
Szz | = A sP (9-4)
u TeySy T 55058
sxy u
a Tz
s
- si+sh
Syz Tyz 25D59
where
D = the modified mean stress. The modified mean stress is defined as:
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! ! r s
02205 Ty T2z = initial stresses

F = (0= 0hmo(1—5))+ (0}, — b0 (1—K)) + (0, —0" o (1—K))
3 (9-5)

/

= p - (1 —”)po

where

/ _
p = Mean stress

Modified second and third deviatoric invariants are defined accordingly in Egn. 9-6 (p. 100)
and Egn. 9-7 (p. 100).

= ~A oA A A PN ~2 ~2 ~2

J 2:_Sxacsyy_Sacacszz_syyszz+szz+5mz+syz (9-6)
T_A A A 255 4 A A2 A A2 A A2 (9_7)
3—3mx3yyszz+ Sxysyzszz_smxsyz_syysxz_szzsxy

The yield criterion is expressed as:

A P
f= H(w)Jg—/s%:O (9-8)
where, to approximate the Tresca criterion, the term H(w) is defined as:
1 27 T
H(w) = cos® (Earccos(l — 2a1w)> with w= T_g (9-9)
J

2
By letting the value of a; go to 1.0 an exact Tresca criterion is obtained. The parameter a; can

be directly linked to the rounding ratio s, C/su A . This ratio takes typically a value just below 1.0
and a value of 0.99 is chosen as an appropriate default. Figure 9-3 (p. 100) shows the failure
criterion of the NGI-ADP model in the w-plane (for Cartesian stresses) with default rounding
ratio. This criterion is continuous and differentiable and it is described by a single function.

)
WY
(TX)C
(PS)A

So

PS)P

S (TX)E s

XX
Figure 9-3: Failure criterion of the NGI-ADP model in the w-plane

The combinations of strength ratios are limited by lower limit for combinations of suc/suA and
suP/suA.

The value of ’YJIZ is given by elliptical interpolation:
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ﬁgﬁp\/(ﬁ% — ﬁ%) c0s20 + Ezc — ﬁ%ﬁAcos (2@)

7}1;(@) _ (9-10)
R% — (R2B — R%) cos? (26)
where
Ra= Yip~ Vo (9-11)
2

p p

_ +

Rp— w (9-12)

Ro= /11 s (9-13)
p —_~

— 0 Rp

Rp=-125_~ (9-14)

Rc

p p p . . . I o .
and, Y.c» Vf,pss @nd Y g are the failure plastic maximum shear strain in triaxial compression,

direct simple shear and triaxial extension respectively. Note that g is not the Lode angle, but is
defined as:

A V3 Sy
26) = X2 fw_ :
cos( ) 5 —j; (9-15)

A non-associated flow rule is used such that the derivative of the plastic potential g is:

8g 1(~ op (ag)T oJy [1
- = = I+—, —_— - - —
oo 2( 0o \ Op 0s j2 (9-16)

where T is a modified unit vector:
1

=)
Il

sits? (9-17)

2sD58

A P
S, +8,
25DSS

u

The increment in plastic shear strain is defined as:

[N

%((dfgw - dggy)2 + (deke — dglz)z)2 + (dehy — dszz’z)Q)

dv? = \/H(w) \ ) ) (9-18)
+(dvzy)” + (dvz) "+ (dvy2)
where the plastic strains are defined as:
de? — a9 (9-19)

oo’

with dA being the plastic multiplier. Hence, gives the relation between the hardening parameter
~? and the plastic multiplier dA.
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9.1.4 | The NGI-ADP model traction criterion for
interfaces in 2D

For plane strain conditions a traction criterion, corresponding to the plane strain failure
criterion is formulated. This criterion is intended to be used on interface elements in finite
element calculations. The interface strength is controlled by a lower and upper limit, which are
dependent on the direction of the interface, B.

Let a plane being oriented by the direction 8 to the horizontal. The plane has a tangential
direction t and a normal direction n and the adjacent continuum defines the stresses o,,,, oy and

T, by:

Ot Oz
Onn | =A | Oy (9-20)
Tnn Tzy
where
A = Transformation matrix.

In a local coordinate system three strains g, €4 and y;, are defined in the plane strain condition.
Due to the requirement of no volume change for a perfect plastic mechanism with shearing in
tangential direction, will give that g, = €4 = 0, resulting in:
of
=0 9-21
a(o-nn - O'tt) ( )

The plane strain formulation for the NGI-ADP model is defined as follows:

(%Cos(zﬁ) - TtnSin(z,B) - RA)2 =+

f= o 2 | —Rs (9-22)
(R—ﬁ (""T“sm@ﬂ) + Tin cos(2ﬂ)))
where

A_ P

Ry = % (9-23)
A _ P

Rp = % (9-24)

Rp = sD58 (9-25)

9.2 | Parameters of the NGI-ADP model

The NGI-ADP model requires a total of eleven parameters.

® Parameters for stiffness:

Gl /54 Ratio unloading/reloading shear modulus over (plane strain) active shear [-]
ur/Zu | strength
C . .. . C _ c °
of Shear strain in triaxial compression ("Yf =3/2 €] ‘) [%]
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fy];E Shear strain in triaxial extension [%]

7}355 Shear strain in direct simple shear [%]

* Parameters for strength:

A ref Reference (plane strain) active shear strength [kN/
Sy m2]
c, TX/ 4 | Ratio triaxial compressive shear strength over (plane strain) active shear [-]
Su Su | strength(default = 0.99)
Yref | Reference level [m]
4 Increase of shear strength with depth [kN/
S wine mQ/m]
sP/sh Ratio of (plane strain) passive shear strength over (plane strain) active shear | [-]
w/Zu | strength
mo/s4 | Initial mobilization (default = 0.7) [-]
5DSS /g4 Ratio of direct simple shear strength over (plane strain) active shear [-]
u u [ strength

* Advanced parameters:

Vy Undrained Poisson's ratio [-]

9.2.1/ Ratio unloading / reloading shear modulus over plane strain active shear
strength(GurISuA)

Ratio unloading / reloading shear stiffness as a ratio of the plane strain active shear strength. If

the shear strength is increasing with depth the constant ratio for G,,/s A gives a shear stiffness
increasing linearly with depth.

9.2.2 | Shear strain at failure in triaxial compression (yfc)

This parameter vy ¢ (%) defines the shear strain at which failure is obtained in undrained triaxial

compression mode of loading, i.e. y¢ =32 €1 € from triaxial testing.

9.2.3 | Shear strain at failure in triaxial extension (ny)

This parameter vy £ (%) defines the shear strain at which failure is obtained in undrained triaxial
extension mode of loading, i.e. ny = 3/2¢; E from triaxial testing.
. . . . . DSS
9.2.4 | Shear strain at failure in direct simple shear (Vf )
DSS

This parameter vy (%) defines the shear strain at which failure is obtained in undrained
direct simple shear mode of loading (DSS device).
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For near normally consolidated clays, the failure strain in compression loading vy s generally
the lowest value and the failure strain in extension loading vy E is the highest value. The failure
strain from direct simple shear loading takes an intermediate value, i.e. yf c <Yt pss <Yt £ From
laboratory test results reported in literature one find typically ny in the range 3-8 %, v PSS in

the range 2-8 % and yfc in the range 0.5 - 4%.

If stress-strain curves from undrained triaxial and/or DSS laboratory tests are available it is
recommended to choose the elastic shear modulus and failure strains such that a good fit to
the curves are obtained. This is in particular important for deformation and SLS assessments.

However, for pure capacity and stability (e.g. factor of safety) analyses the values for shear
strains at failure is not important and one may set all three values equal to e.g. 5 % for simplicity.

Note that it is the failure strains from triaxial loading that is input because they are the most
readily available. When the NGI-ADP model is used for plane strain conditions the failure strains
will automatically be slightly adjusted for that loading condition. See Grimstad, Andresen &
Jostad (2010) for more details.

9.2.5 Reference active shear strength (su,refA)

The reference active shear strength is the shear strength obtained in (plane strain) undrained
active stress paths for the reference depth y,f, expressed in the unit of stress.

9.2.6 | Ratio triaxial compressive shear strength over active shear strength
C,TX,. A

(su™ "Isy’)

This ratio SE’TX/SUA defines the shear strength in undrained triaxial compression mode of loading

in relation to the shear strength in plane strain undrained active mode of loading. The value

cannot be changed by the user and is predefined at 0.99 giving practically the same strengths in

triaxial and plane strain conditions.

9.2.7/ Reference depth (y/ef)

This is the reference depth y,er at which the reference active shear strength Sf,ref is defined.
Below this depth the shear strength and stiffness may increase linearly with increasing depth.

Above the reference depth the shear strength is equal to s;i,,ef.

9.2.8 | Increase of shear strength with depth (su,incA)

This parameter Sf,mf defines the increase (positive) or decrease (negative) of the undrained
active shear strength with depth, expressed in the unit of stress per unit of depth. Above the

reference depth the shear strength is equal to siref: below the reference depth the shear
strength is defined as:

sf(y) = sf,ref + (yref - y)sf,inc (9-26)

9.2.9 | Ratio of passive shear strength over active shear strength (sup/suA)

This ratio sZ/sf} defines the undrained shear strength for (plane strain) passive mode of loading.
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9.2.10 | Ratio of direct simple shear strength over active shear strength (suDSS/

A
Sy )
This ratio s{?ss/sf defines the undrained shear strength for direct simple shear mode of loading.

Please note that active / passive strength input is defined for plane strain conditions. However,
it is generally acceptable and only slightly conservative to use the strength obtained from a

triaxial compression test as input for the active plane strain condition (i.e. sﬁ = s,?TX) and the

strength obtained from a triaxial extension test as input for the passive plane strain condition (i.e.
sP = sf’TX). More control over the strength difference between triaxial and plane strain loading
conditions can be obtained by using the advanced parameter sg’TX/s;‘.

For near normally consolidated clays, the passive strength sf is generally the lowest strength
value, while the direct simple shear strength takes an intermediate value, i.e. sZ < sP95 < 54,
From laboratory results reported in literature one find typically sf/sf in the range 0.2 - 0.5 and

sD55 /54 in the range 0.3 - 0.8. If direct simple shear strengths are not available s?%% can be

estimated from:

sD55 /st = (14 sb/s2) /2 (9-27)

9.2.11! Initial mobilization (TolsuA)

The initial mobilization 7-0/3‘;1 is clearly defined for nearly horizontally deposited normally
consolidated or lightly overconsolidated clay layers where the vertical stress is the major
principle stress ¢';. As defined in Figure 9-4 (p. 106), the initial mobilization can be calculated
from the earth pressure coefficient at rest Ky by the following equation:

0.5(1 — Ko)o', g
o8y = — r— (9-28)
u
where
Oyyo = Initial (in situ) vertical effective stress (compression negative)

A default value 0.7 of To/sﬁ is given which represent a typical value for a near normally
consolidated clay deposit (e.g. Ko = 0.55 and —07,0/s4 = 3.11 or K, = 0.6 and —07,0/s% = 3.5).
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Figure 9-4: Definition of initial mobilised maximum shear stress Tt
=1/2|6'yy0 - 6'xxol for a soil element in a horizontal deposited layer.

A more detailed evaluation of the initial (in situ) mobilization can be done by assessing the in situ
K, value and use the relationship: To/s4 = —0.5(1 — Ko)ag,yo/s;:‘. Changing the default value for

the initial mobilization should be considered in particular for overconsolidated materials where
Ko generally is higher than 0.6, however the NGI-ADP model is not intended used for heavily

overconsolidated clays and should be used with care for Ko > 1.0 (i.e. negative 1o/s, A).

For non-horizontal layering (e.g. sloping ground) a KO procedure is normally not recommended.
In such cases it is recommended to establish the initial stress condition by gravity loading using
a material model suited for such a purpose (e.g. drained behavior with the Mohr-Coulomb model
or the Hardening Soil model). After the equilibrium initial stresses are established for gravity
loading in the first phase, one should switch to the NGI-ADP model in the relevant clusters for
the next phase and run a NIL step (i.e. without changing the external loads). The hardening
parameter of the NGI-ADP model will then be adjusted such that equilibrium is obtained (f=0).
Then in the third phase the external loading can be applied.

9.2.12  Poisson's ratio (v')

The Undrained (C) drainage option is used. A pure total stress analysis is carried out where no
distinction between effective stresses and pore pressures is made and all stress changes should
be considered as changes in total stress. A Poisson's ratio close to 0.5 should be entered. v =
0.495 is given as default.

9.3 | State parameters in the NGI-ADP model

In addition to the output of standard stress and strain quantities, the NGI-ADP model provides
output (when being used) on state variables such as plastic shear strain y, and the hardening

function r,. These parameters can be visualised by selecting the State parameters option from
the Stresses menu. An overview of available state parameters is given below:

vP Plastic shear strain : 7% = >_ dy? [-]

dryP Described in Egn. 9-18 (p. 101). [-]
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[op /P
Hardening function: , = o VI [-]

L+y? /7%
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The Soft soil model [ADV]

As soft soils, we consider near-normally consolidated clays, clayey silts and peat. A special
feature of such materials is their high degree of compressibility. This is best demonstrated by
oedometer test data as reported for instance by Janbu in his Rankine lecture (1985). Considering
tangent stiffness moduli at a reference oedometer pressure of 100 kPa, he reports E g = 1t0 4
MPa for normally consolidated (NC) clays, depending on the particular type of clay considered.
The differences between these values and stiffnesses for NC-sands are considerable as here
we have values in the range of 10 to 50 MPa, at least for non-cemented laboratory samples.
Hence, in oedometer testing, normally consolidated clays behave ten times softer than normally
consolidated sands. This illustrates the extreme compressibility of soft soils.

A feature of soft soils is the linear stress-dependency of soil stiffness. According to the
Hardening Soil model we have:

ref _Ull "
Eoed:Eoed pref (10-1)

at least for c = 0 and 0’5 = Ko " 0;'. A linear relationship is obtained for m = 1. Indeed, on using
an exponent equal to unity, the above stiffness law reduces to:

/

o
Eoed = — (10-2)
TN
where
. pref
A = T (10-3)

oed
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For the special case of m = 1, the Hardening Soil model yields ¢ = "¢} /o', which can be

integrated to obtain the well-known logarithmic compression law € = = ln(—a’l) for primary
oedometer loading.

For many practical soft-soil studies, the modified compression index A" is known and the
PLAXIS 2D user can compute the oedometer modulus from the relationship:

pre f

Eref —

— (10-4)
oed )\*

From the above considerations it would seem that the Hardening Soil model is quite suitable for
soft soils. Indeed, most soft soil problems can be analysed using this model, but the Hardening

Soil model is not suitable when considering very soft soils with a high compressibility, i.e Egeq ref/

ref

Eso ~ < 0.5. For such soils, the Soft Soil model may be used.

Some features of the Soft Soil model are:
® Stress dependent stiffness (logarithmic compression behaviour).
* Distinction between primary loading and unloading-reloading.

®* Memory for pre-consolidation stress.
® Failure behaviour according to the Mohr-Coulomb criterion.

10.1' Isotropic states of stress and strain (o4
- 0-'2 - 0-,3)

In the Soft Soil model, it is assumed that there is a logarithmic relation between changes in
volumetric strain, €,, and changes in mean effective stress, p', which can be formulated as:

P+ ccot (¢) >

0_ %
€y — &, = — A%l
! Y n<p0+ccot (p)

(m'rgin compression) (10-5)
In order to maintain the validity of Eqn. 10-5 (p. 109) a minimum value of p' is set equal

to a unit stress. The parameter A" is the modified compression index, which determines the
compressibility of the material in primary loading. Note that A" differs from the index A as used
by Burland (1965). The difference is that Eqn. 10-5 (p. 109) is a function of volumetric strain

instead of void ratio. Plotting Eqn. 10-5 (p. 109) gives a straight line as shown in Figure 12-1
(p.133) .

During isotropic unloading and reloading a different path (line) is followed, which can be
formulated as:

! t
e — ef,o - _ K*ln<;—+i-i—(:)c>‘c((‘,’9;))> (unloading and reloading) (10-6)

Again, a minimum value of p' is set equal to a unit stress. The parameter k" is the modified
swelling index, which determines the compressibility of the material in unloading and

subsequent reloading. Note that k" differs from the index k as used by Burland. The ratio A/

K is, however, equal to Burland's ratio A/k. The soil response during unloading and reloading
is assumed to be elastic as denoted by the superscript e in Eqn. 10-6 (p. 109) . The elastic
behaviour is described by Hooke's law. Eqgn. 10-6 (p. 109) implies linear stress dependency
on the tangent bulk modulus such that:
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E, "+ ccot

r Pt (#) (10-7)
3(1 — 2vy,) k

in which the subscript ur denotes unloading / reloading. Note that effective parameters are

considered rather than undrained soil properties, as might be suggested by the subscripts ur.
Neither the elastic bulk modulus, K, nor the elastic Young's modulus, E,,, is used as an input

Kur =

parameter. Instead, v, (Poisson's ratio) and k" are used as input constants for the part of the
model that computes the elastic strains.

»np'

Pp

Figure 10-1: Logarithmic relation between volumetric strain and mean stress

An infinite number of unloading / reloading lines may exist in Figure 10-1 (p. 110), each
corresponding to a particular value of the isotropic pre-consolidation stress p,. The pre-
consolidation stress represents the largest stress level experienced by the soil. During unloading
and reloading, this pre-consolidation stress remains constant. In primary loading, however, the

pre-consolidation stress increases with the stress level, causing irreversible (plastic) volumetric
strains.

10.2 | Yield function

The yield function of the Soft Soil model is defined as:

f=Ff—-m (10-8)
where
f = Function of the stress state (p’, )
Pp = The pre-consolidation stress which is a function of plastic strain.
_ >
_ +9 10-9
f M2 (p' + ccot (¢)) P ( )
p
0 —&v
=p,exXp| /4= 10-10
Pp =Dy p( P ) ( )
where
[1‘ =

similar deviatoric stress quantity as defined for the cap yield surface in the 6
The Hardening Soil model (Isotropic hardening) (p. 65):

5 3+sin
=o'+ (a-1o) a= % (10-11)
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The yield function (f = 0) describes an ellipse in the p' - G-plane, as illustrated in Figure 10—
2 (p. 111). The parameter M in Egn. 10-9 (p. 110) determines the height of the ellipse.

And it is responsible for the ratio of horizontal to vertical stresses in primary one-dimensional
compression.

Threshold ellipse

»p'
-« »
ccot @ Pp

Figure 10-2: Yield surface of the Soft Soil model in p'- g-plane

As a result, the parameter M determines largely the coefficient of lateral earth pressure K¢°. In
view of this, the value of M can be chosen such that a known value of Kq* is matched in primary
one-dimensional compression. Such an interpretation and use of M differs from the original
critical state line idea, but it ensures a proper matching of Ky,

The tops of all ellipses are located on a line with slope M in the p' - g-plane. In Burland (1965)
and Burland (1967) the M-line is referred to as the critical state line and represents stress states
at post peak failure. The parameter M is then based on the critical state friction angle. In the Soft
Soil model, however, failure is not necessarily related to critical state. The Mohr-Coulomb failure
criterion is a function of the strength parameters ¢ and ¢, which might not correspond to the M-
line.

The isotropic pre-consolidation stress p, determines the extent of the ellipse along p' axis.
During loading, an infinite number of ellipses may exist (see Figure 10-2 (p. 111)) each
corresponding to a particular value of p,. In tension (p'< 0), the ellipse extends to ccot ¢ ( Egn.
10-9 (p. 110) and Figure 10-2 (p. 111)). In order to make sure that the right hand side of the
ellipse (i.e. the 'cap') will remain in the 'compression' zone (p'> 0) a minimum value of ccot ¢ is
adopted for p,. For ¢ = 0, a minimum value of p,, equal to a stress unit is adopted. Hence, there
is a 'threshold' ellipse as illustrated in Figure 10-2 (p. 111).

The value of p, is determined by volumetric plastic strain following the hardening relation, Eqn.
10-10 (p. 110) . This equation reflects the principle that the pre-consolidation stress increases
exponentially with decreasing volumetric plastic strain (compaction). pg can be regarded as the
initial value of the pre-consolidation stress. The determination of pg is treated in 2.8 The initial

pre-consolidation stress in advanced models (p. 27). According to Egn. 10-10 (p. 110) the
initial volumetric plastic strain is assumed to be zero.

In the Soft Soil model, the yield function, Egn. 10-8 (p. 110) , describes the irreversible
volumetric strain in primary compression, and forms the cap of the yield contour. To model the
failure state, a perfectly-plastic Mohr-Coulomb type yield function is used. This yield function
represents a straight line in p' - ¢ -plane as shown in Figure 10-2 (p. 111). The slope of the
failure line is smaller than the slope of the M-line.
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Figure 10-3: Representation of total yield contour of Soft Soil model in principal stress space

The total yield contour, as shown by the bold lines in Figure 10-3 (p. 112), is the boundary
of the elastic stress area. The failure line is fixed, but the cap may increase in primary
compression. Stress paths within this boundary give only elastic strain increments, whereas
stress paths that tend to cross the boundary generally give both elastic and plastic strain

increments.

For general states of stress (p', ), the plastic behaviour of the Soft Soil model is defined by the
combination of the cap yield function and the Mohr-Coloumb vyield functions. The total yield

contour in principal

stress space is indicated in Figure 10-3 (p. 112).

10.3 | Parameters of the Soft Soil model

The parameters of the Soft Soil model include compression and swelling indices, which are
typical for soft soils, as well as the Mohr-Coulomb model failure parameters. In total, the Soft

Soil model requires

Basic parameters:

the following parameters to be determined:

A* Modified compression index [-]
K* Modified swelling index [-]
Vur Poisson's ratio for unloading / reloading [-]
c Effective cohesion [kN/m?]
0) Friction angle [°]
1 Dilatancy angle [°]
o Tensile strength [KN/m?]
Miscellaneous parameters (use default settings):
K;° Coefficient of lateral stress in normal consolidation [-]
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M Ko " -parameter [-]

Instead of defining the stiffness by the basic stiffness parameters, alternative stiffness
parameters can be used. These material constants are given by:

Ce Compression index [-]
Cs Swelling index [-]
Einit Initial void ratio [-]

Soil - Soft Soil - <MoMName:>

2k O
General Mechanical Groundwater Thermal Interfaces Initial
Property Unit Value
stiffness
A" (ambda®) 0.000
k" (kappa®) 0.000
Yo 0.1500
Alternatives
Usze alternatives [
0.000
0.000
0.5000
Strength
Shear
(. kMfm?2 5,000
@' (phi) ° 25,00
w (psi) @ 0.000
Tension
Tension cut-off
Tensile strength ki 2 0.000
Miscellaneous
Use defaults
0.5774
2.413
Mext oK Cancel

Figure 10-4: Mechanical tabsheet for the Soft Soil model

Figure 10-4 (p. 113) shows the PLAXIS 2D window for inputting the values of the model
parameters. M is calculated automatically from the coefficient of the lateral earth pressure, Ky,
by means of Eqn. 10-13 (p. 115) . Note that, physically, in the current model M differs from the
similar parameter in the Modified Cam-Clay model where it is related to the material friction.
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10.3.1/ Modified swelling index and modified compression index

These parameters can be obtained from an isotropic compression test including isotropic
unloading. When plotting the logarithm of the mean stress as a function of the volumetric strain
for clay-type materials, the plot can be approximated by two straight lines (see Figure 10-1 (p.
110)). The slope of the primary loading line gives the modified compression index, and the
slope of the unloading (or swelling) line gives the modified swelling index. Note that there is a
difference between the modified indices k* and A* and the original Cam-Clay parameters k and
A. The latter parameters are defined in terms of the void ratio e instead of the volumetric strain
€y

Apart from the isotropic compression test, the parameters k* and A* can be obtained from

a one-dimensional compression test. Here a relationship exists with the internationally
recognised parameters for one-dimensional compression and swelling indices, C. and C,. These
relationships are summarised in Table 10-1 (p. 114) and Table 10-2 (p. 114).

Table 10-1: Relationship to Cam-Clay parameters

* A * K
1.)\:1+e 2. K =

Table 10-2: Relationship to internationally normalised parameters

* C. £ 20,
3. A = 5309 4 K~ 5300

©® Note: Remarks on Table 10-1 (p. 114) and Table 10-2 (p. 114)

e Inrelations 1and 2, the void ratio, e, is assumed to be constant. In fact, e will change
during a compression test, but this will give a relatively small difference in void ratio.
For e one can use the average void ratio that occurs during the test or just the initial
value.

e As further explained in 11.6 Formulation of elastic 3D-strains (p. 125) in relation
4 there is no exact relation between k* and the one-dimensional swelling index Cs,
because the ratio of horizontal and vertical stresses changes during one-dimensional
unloading. For this approximation it is assumed that the average stress state during
unloading is an isotropic stress state, hence Kp=1. This assumption is reasonable for
moderately overconsolidated clays with friction angles in the range of 20° - 30°.

e In practice, swelling is often assumed to be equivalent to recompression behaviour,
which, may not be right. Hence k* should be based on C rather than the
recompression index C,.

e The factor 2.3 in relation 3 is obtained from the ratio between the logarithm of base
10 and the natural logarithm.

e The ratio A* / k* (=A / k) ranges, in general, between 2.5 and 7.

10.3.2 Cohesion

The cohesion has the dimension of stresses. A small effective cohesion may be used, including
a cohesion of zero. Entering a cohesion will result in an elastic region that is partly located in the
'tension' zone, as illustrated in Figure 10-2 (p. 111). The left hand side of the ellipse crosses

the p'-axis at a value of ccot ¢. In order to maintain the right hand side of the ellipse (i.e. the
cap) in the 'pressure' zone of the stress space, the isotropic pre-consolidation stress p, has a
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minimum value of ccot ¢. This means that entering a cohesion larger than zero may result in a
state of 'overconsolidation', depending on the magnitude of the cohesion and the initial stress
state. As a result, a stiffer behaviour is obtained during the onset of loading. It is not possible

to specify undrained shear strength by means of high cohesion and a friction angle of zero.
Input of model parameters should always be based on effective values. The PLAXIS option to
model undrained behaviour using effective parameters may be used (Undrained (A). Please note
that the resulting effective stress path may not be accurate, which may lead to an unrealistic
undrained shear strength. Hence, when using Undrained (A) as drainage type, the resulting
stress state must be checked against a known undrained shear strength profile.

10.3.3 | Friction angle

The effective angle of internal friction represents the increase of shear strength with effective
stress level. It is specified in degrees. Zero friction angle is not allowed. On the other hand, care
should be taken with the use of high friction angles. It is often recommended to use ¢y, i.e. the
critical state friction angle, rather than a higher value based on small strains. Moreover, using a
high friction angle will substantially increase the computational requirements.

10.3.4 | Dilatancy angle

For the type of materials, which can be described by the Soft Soil model, the dilatancy can
generally be neglected. A dilatancy angle of zero degrees is considered in the standard settings
of the Soft Soil model.

10.3.5 ! Poisson's ratio

In the Soft Soil model, the Poisson's ratio v is the well known pure elastic constant rather

than the pseudo-elasticity constant as used in the linear elastic perfectly-plastic model. Its
value is usually be in the range between 0.1 and 0.2, with a default of 0.15. For loading of
normally consolidated materials, the Poisson's ratio plays a minor role, but it becomes important
in unloading problems. For example, for unloading in a one-dimensional compression test
(oedometer), the relatively small Poisson's ratio will result in a small decrease of the lateral
stress compared with the decrease in vertical stress. As a result, the ratio of horizontal and
vertical stress increases, which is a well-known phenomenon in overconsolidated materials.

Hence, the Poisson's ratio should not be based on the normally consolidated Ky“-value, but
on the ratio of the horizontal stress increment to the vertical stress increment in oedometer
unloading and reloading test such that:

Vyr Aoy,

v~ 2oy, (unloading and reloading) (10-12)

10.3.6 | K;°-parameter

The parameter M is automatically determined based on the coefficient of lateral earth pressure
in normally consolidated condition, K¢, as entered by the user. The exact relation between M
and K gives (Brinkgreve, 1994):

(1K) (1 - K79) (1 - 2v) (N /6" — 1)
(L+2K5)" (12K (1= 2v) 2 = (1= K3) (14 v

The value of M is indicated in the input window. As can be seen from Eqgn. 10-14 (p. 116), M is
also influenced by the Poisson's ratio v,, and by the ratio A* / k*. However, the influence of K*
is dominant. Eqn. 10-14 (p. 116) can be approximated by:

M =

(10-13)
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M~ 3.0—-28K)° (10-14)

10.4 | State parameters in the Soft Soil model

In addition to the output of standard stress and strain, the Soft Soil model provides output (when

being used) on state variables such as the hardening parameter y* and the isotropic pre-
consolidation stress p,. These parameters can be visualised by selecting the State parameters

option from the Stresses menu. An overview of available state parameters is given below:

Peq Equivalent isotropic stress [kN/m2]
Pp Isotropic preconsolidation stress peq = p' + WM [kN/m?]

OCR |lIsotropic overconsolidation ratio OCR = p,,/p*? [-]
VP Hardening parameter (equivalent mobilised plastic shear strain) [-]
Eur Current stress-dependent elastic Young's modulus [kN/mz]
c Current depth-dependent cohesion [kN/mz]

10.5 / On the use of the Soft Soil model in
dynamics calculations

When using the Soft Soil model in dynamics calculations, the modified swelling index k* needs
to be selected such that the model correctly predicts wave velocities in the soil. This generally
requires a smaller value than just an unloading-reloading index.

When subjected to dynamic or cyclic loading, the Soft Soil model will generate plastic strains
when the preconsolidation stress is increased. However, it should be noted that stress cycles
within the current hardening contour will only generate elastic strains and no (hysteretic)
damping, nor accumulation of strains or pore pressure, nor liquefaction. In order to account for
the soil damping in cyclic loading, Rayleigh damping may be defined.
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Soft Soil Creep model (time
dependent behaviour) [ADV]

1.1/ Introduction

Both the Hardening Soil model and the Soft Soil model can be used to model the behaviour

of compressible soft soils, but none of these models are suitable when considering creep,

i.e. secondary compression. All soils exhibit some creep, and primary compression is thus
always followed by a certain amount of secondary compression. Assuming the secondary
compression (for instance during a period of 10 or 30 years) to be a certain percentage of the
primary compression, it is clear that creep is important for problems involving large primary
compression. This is for instance the case when constructing embankments on soft soils.
Indeed, large primary settlements of footings and embankments are usually followed by
substantial creep settlements in later years. In such cases it is desirable to estimate the creep
from FEM-computations.

Foundations may also be founded on initially overconsolidated soil layers that yield relatively
small primary settlements. Then, as a consequence of the loading, a state of normal
consolidation may be reached and significant creep may follow. This is a treacherous situation
as considerable secondary compression is not preceded by the warning sign of large primary
compression. Again, computations with a creep model are desirable.

Buisman (1936) was probably the first to propose a creep law for clay after observing that soft-
soil settlements could not be fully explained by classical consolidation theory. This work on 1D-
secondary compression was continued by other researchers including, for example, Bjerrum
(1967), Garlanger (1972), Mesri & Godlewski (1977) and Leroueil (1977). More mathematical lines
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of research on creep were followed by, for example, Sekiguchi (1977), Adachi & Oka (1982) and
Borja & Kavaznjian (1985). This mathematical 3D-creep modelling was influenced by the more
experimental line of 1D-creep modelling, but conflicts exist.

3D-creep should be a straight forward extension of 1D-creep, but this is hampered by the fact
that present 1D-models have not been formulated as differential equations. For the presentation
of the Soft Soil Creep model we will first complete the line of 1D-modelling by conversion to

a differential form. From this 1D differential equation an extension was made to a 3D-model.
This chapter gives a full description of the formulation of the Soft Soil Creep model. In addition,
attention is focused on the model parameters. Finally, a validation of the 3D model is presented
by considering both model predictions and data from triaxial tests. Here, attention is focused on
constant strain rate triaxial tests and undrained triaxial creep tests. For more applications of the
model the reader is referred to Vermeer, Stolle & Bonnier (1998), Vermeer & Neher (1999) and
Brinkgreve (2004).

Some basic characteristics of the Soft Soil Creep model are:

* Stress-dependent stiffness (logarithmic compression behaviour)
* Distinction between primary loading and unloading-reloading

® Secondary (time-dependent) compression

* Ageing of pre-consolidation stress

® Failure behaviour according to the Mohr-Coulomb criterion

11.2 | Basics of one-dimensional creep

When reviewing previous literature on secondary compression in oedometer tests, one is struck
by the fact that it concentrates on behaviour related to step loading, even though natural loading
processes tend to be continuous or transient in nature. Buisman (1936) was probably the first

to consider such a classical creep test. He proposed the following equation to describe creep
behaviour under constant effective stress:

e =¢.— Cpglog (%) for t>t, (11-1)
where

€ = The strain up to the end of consolidation.

t = Time measured from the beginning of loading.

te = Time to the end of primary consolidation.

Cp = Material constant

Please note that we do not follow the soil mechanics convention that compression is considered
positive. Instead, compressive stresses and strains are taken to be negative. For further
consideration, it is convenient to rewrite this equation as:

t t
azsc—Cglog( C;_ ) for t'>0 (11-2)

c

with t'=t - t; being the effective creep time.

Based on the work by Bjerrum on creep, as published for instance in 1967, Garlanger (1972)
proposed a creep equation of the form:
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e=¢e.—C,log <TC+T,) with Co, =Cp(1+ey) for: t'>0 (11-3)

Te
Differences between Garlanger's and Buisman's forms are modest. The engineering strain € is
replaced by void ratio e and the consolidation time t. is replaced by the parameter t.. Egn. 11-2
(p. 118) and Eqgn. 11-3 (p. 119) are identical when choosing 1. = t.. For the case that 1. = t,
differences between both formulations will vanish when the effective creep time t' increases.

For practical consulting, oedometer tests are usually interpreted by assuming t. = 24h. Indeed,
the standard oedometer test is a Multiple Stage Loading Test with loading periods of precisely
one day. Due to the special assumption that this loading period coincides to the consolidation
time t, it follows that such tests have no effective creep time.

Hence one obtains t'= 0 and the log-term drops out of Egn. 11-3 (p. 119) . It would thus seem
that there is no creep in this standard oedometer test, but this suggestion is false. Even highly
impermeable oedometer samples need less than one hour for primary consolidation. Then all
excess pore pressures are zero and one observes pure creep for the other 23 hours of the day.
Therefore we will not make any assumptions about the precise values of 1. and ..

Another slightly different possibility to describe secondary compression is the form adopted by
Butterfield (1979):

Te

t/
el =¢f _cln (Tc + ) for t'>0 (11-4)

where € is the logarithmic strain defined as:

Vv l1+e
H_15(=—) =1 _
¢ o Vo 1 1+eg (11=5)

with the subscript '0' denoting the initial values. The superscript 'H' is used to denote
logarithmic strain, as the logarithmic strain measure was originally used by Hencky. For small
strains it is possible to show that:

C. (g
(1+e)-In10 In 10
because then logarithmic strain is approximately equal to the engineering strain. Both Butterfield

(1979) and den Haan (1994) showed that for cases involving large strain, the logarithmic small
strain supersedes the traditional engineering strain.

(1-6)

11.3 ' On the variables 1. and ¢,

In this section attention will first be focused on the variable t.. Here a procedure is to be
described for an experimental determination of this variable. In order to do so we depart from
Egn. 11-4 (p. 119) . By differentiating this equation with respect to time and dropping the
superscript 'H' to simplify the notation, one finds:

s _ _c . R R e
€= 17 or inversely : = =< (1M-7)

which allows one to make use of the construction developed by Janbu (1969) for evaluating
the parameters c and 1. from experimental data. Both the traditional way, being indicated in

Figure 11-1 (p. 120) a), as well as the Janbu method of Figure 11-1 (p. 120) b) can be used to
determine the parameter ¢ from an oedometer test with constant load.
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Figure 11-1: Standard oedometer test

The use of the Janbu method is attractive, because both 1. and c follow directly when fitting
a straight line through the data. In Janbu's representation of Figure 11-1 (p. 120) b), 7. is the

intercept with the (non-logarithmic) time axis of the straight creep line. The deviation from a
linear relation for t < t. is due to consolidation.

Considering the classical literature it is possible to describe the end-of-consolidation strain g,
by an equation of the form:

!
Ec=¢€c+ €. =—aln (%) —(b—a)ln (01)6) (11-8)

Og 0p0

Note that € is a logarithmic strain, rather than a classical small strain although we conveniently
omit the subscript 'H'. In the above equation o'y represents the initial effective pressure before

loading and ¢’ is the final effective loading pressure. The values oy and oy, represent the

pre-consolidation pressure corresponding to before-loading and end-of-consolidation states,
respectively. In most literature on oedometer testing, one adopts the void ratio e instead of ¢,
and log instead of In, the swelling (recompression) index C, instead of a, and the compression

index C. instead of b. The above constants a and b relate to Cs and C.. as:

C

@ = {Tie)m 10
( +62 n (11_9)
b= (I+ep)In 10
Combining Eqgn. 11-4 (p. 119) and Egn. 11-8 (p. 120) it follows that:
e=ec°+e=—aln (;‘—é) —(b—a)In (Z—;) —cln (TT—HI) (11-10)

where ¢ is the total logarithmic strain due to an increase in effective stress from o'pto ¢', and a
time period of t.+ t'.

In Figure 11-2 (p. 121) the terms of Eqgn. 11-10 (p. 120) are depicted in an € - In ¢ diagram.
Notice that this figure has a division of strain increments into an elastic and a creep component.
Also, for t'+ tc = 1 day, one arrives precisely on the NC-line.
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Figure 11-2: Idealised stress-strain curve from oedometer test with
division of strain increments into an elastic and a creep component.

Up to this point, the more general problem of creep under transient loading conditions has not
yet been addressed, as it should be recalled that restrictions have been made to creep under
constant load. For generalising the model, a differential form of the creep model is needed. No
doubt, such a general equation may not contain t' and neither 1. as the consolidation time is not

clearly defined for transient loading conditions.

11.4 | Differential law for 1D-creep

The previous equations emphasize the relation between accumulated creep and time, for a given
constant effective stress. For solving transient or continuous loading problems, it is necessary to
formulate a constitutive law in differential form, as will be described in this section. In a first step
we will derive an equation for 7.. Indeed, despite the use of logarithmic strain and In instead of
log, equation (Eqn. 11-10 (p. 120)) is classical without adding new knowledge. Moreover, the
question on the physical meaning of 1. is still open. In fact, we have not been able to find precise
information on 1. in the literature, apart from Janbu's method of experimental determination.

In order to find an analytical expression for the quantity t., we adopt the basic idea that all
inelastic strains are time dependent. Hence total strain is the sum of an elastic part €% and

a time-dependent creep part €° . For non-failure situations as met in oedometer loading
conditions, we do not assume an instantaneous plastic strain component, as used in traditional
elastoplastic modelling. In addition to this basic concept, we adopt Bjerrum's idea that the pre-
consolidation stress depends entirely on the amount of creep strain being accumulated in the
course of time. In addition to Eqn. 11-10 (p. 120) we therefore introduce the expression:

!
e=e+e=-aln (i) —(b—a)In (J”C> (11-11)
0'0 Tp0
where
iEC
Op = Opp €Xp <b — a> (11-12)

Please note that €° is negative, so that Op exceeds 0pp. The longer a soil sample is left to creep
the larger o, grows. The time-dependency of the pre-consolidation pressure g, is now found by
combining Eqn. 11-10 (p. 120) and Egn. 11-11 (p. 121) to obtain:
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+t
ec—egz—(b—a)ln(d”):—c(TJr > (11-13)
Opc Te

This equation can now be used for a better understanding of 1., at least when adding knowledge

from standard oedometer loading. In conventional oedometer testing the load is stepwise
increased and each load step is maintained for a constant period of t.+ t'= T, where T is precisely

one day.

In this way of stepwise loading the so-called normal consolidation line (NC-line) with o, = 0 ' is
obtained. On entering 0, = 0" and t'= T -t; into Eqn. 11-13 (p. 122) it is found that:

(b—a) In (%) —c (@) for: OCR=1 (11-14)

It is now assumed that (7. - t;) < < T. This quantity can thus be disregarded with respect to T and
it follows that:

—a

b=a o bT
2o (2) o ro=(2) (11-15)

Opc g

Hence 1. depends both on the effective stress ¢' and the end-of-consolidation pre-consolidation
stress Opc. In order to verify the assumption (7. - tc) << 1, it should be realised that usual
oedometer samples consolidate for relatively short periods of less than one hour. Considering
load steps on the normal consolidation line, we have OCR=1 both in the beginning and at the

end of the load step. During such a load step o, increases from o, up to oy, during the short

period of (primary) consolidation. Hereafter o, increases further from o, up to o' during a

relatively long creep period. Hence, at the end of the day the sample is again in a state of normal
consolidation, but directly after the short consolidation period the sample is under-consolidated
with g, < 0. For the usually very high ratios of (b - a)/c= 15, we thus find very small 7.-values

from Eqgn. 11-15 (p. 122) . Hence not only t. but also 1. tends to be small with respect to . It
thus follows that the assumption (t.- t;) << Tis certainly correct.

Having derived the simple expression Eqn. 11-15 (p. 122) for T, it is now possible to formulate
the differential creep equation. To this end Eqgn. 11-10 (p. 120) is differentiated to obtain:

b—a

./ Ope P
é:ée+écz_ai,_i< P ) (11-16)
o Tc \ Op

where 1. + t' can be eliminated by means of Eqgn. 11-13 (p. 122) to obtain:

o/ 2-a
é:ée+é“:—ai,—i< apc) (11-17)
o Te \ Op
with:
_50
Op = Opp €XP <b — a> (1M-18)

Again it is recalled that € is a compressive strain, being considered negative in this manual.
Egn. 11-15 (p. 122) can now be introduced to eliminate 1. and o, and to obtain:

. | e
E=é+s°=—ql _ i( i) (11-19)
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1.5 | Three-dimensional-model

On extending the 1D-model to general states of stress and strain, the well-known stress
invariants for isotropic stress p and deviatoric stress g are adopted. These invariants are used to
define a new stress measure named p°? :

~2
eq _ f q 11-20
PP A T e oot (9) (1-20)

and g is a similar deviatoric stress quantity as defined in the Hardening Soil model and Soft Soil

model. In Figure 11-3 (p. 123) it is shown that the stress measure p%? is constant on ellipses

in p - g-plane. In fact we have the ellipses from the Modified Cam-Clay model as introduced by
Roscoe & Burland (1968).
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Figure 11-3: Diagram of p°®? -ellipse in a p- §-plane

The soil parameter M represents the slope of the so-called 'critical state line' as also indicated in
Figure 11-3 (p. 123). We use:

6 sin (¢ev)

M= e
3 — sin (¢e)

(1-21)

where

Pev = Critical-void friction angle, also referred to as critical-state friction angle.

The equivalent pressure p®? is constant along ellipsoids in principal stress space.

To extend the 1D-theory to a general 3D-theory, attention is now focused on normally
consolidated states of stress and strain as met in oedometer testing. In such situations it yields

o'y, = 0'3 = Ky° 0", and it follows from Eqgn. 11-20 (p. 123) that:

oK | 30K’

p;q = Up 3 M2(1+2K6m) (11_22)
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where

eq - . . . . . .
Dp = Generalised pre-consolidation pressure, proportional to the one-dimensional

one op.

For a known stress state in p'-q stress space, peq can thus be computed from o', and with
known values of K{, p,’ can thus be computed from Op. Omitting the elastic strain in the 1D-

equation (Eqn. 11-19 (p. 122)), introducing the above expressions for p®? and p;’ and writing €,
instead of ¢ it is found that:

* %

et = HT (z_pz) A= where pSt :p;g exp (%) (11-23)
where

A" = modified compression index

K" = modified swelling index

w = modified creep index

For one-dimensional oedometer conditions, this equation reduces to Eqn. 11-19 (p. 122), so
that one has a true extension of the 1D-creep model. It should be noted that the subscript '0' is

once again used in the equations to denote initial conditions and that €, = 0 for time t = 0.

Instead of the parameters a, b and ¢ of the 1D-model, the 3D-model uses the material
parameters k*, A* and u*, who fit into the framework of critical state soil mechanics. Conversion
between constants follows the rules:

K ~2(14+2Ko)a AN'=b p'=c (11-24)
The expression for k* is an approximation under the assumption that the Poisson's ratio for

unloading-reloading, v, 20.2. There is no constant relation between k* and a, since during

unloading and reloading under oedometer conditions the ratio of normal stress components
changes and therefore the ratio between changes of p' and o' deviates.

As yet the 3D-creep model is incomplete, as we have only considered a volumetric creep strain
e, ©, whilst soft soils also exhibit deviatoric creep strains.

To introduce general creep strains, we adopt the view that creep strain is simply a time-
dependent plastic strain. It is thus logic to assume a flow rule for the rate of creep strain, as

usually done in plasticity theory. For formulating such a flow rule, it is convenient to adopt the
vector notation and considering principal directions:

g:(ol ()] 0‘3)T and §:(61 €2 63)T (11—25)

where T is used to denote a transpose. Similar to the 1D-model we have both elastic and creep
strains in the 3D-model. Using Hooke's law for the elastic part, and a flow rule for the creep part,
one obtains:

. .e .c —1. 890
E=& +¢& =D+ (11-26)
0o
where the elasticity matrix and the plastic potential function are defined as:
1 —Vyr —Uur
Dl= gl -v, 1 —v,| and g°=p (11-27)

—Uyr —Uyr 1
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where E, relates to the modified swelling index (Egn. 11-32 (p. 125)). Hence we use the

equivalent pressure p®? as a plastic potential function for deriving the individual creep strain-
rate components. The subscripts 'ur' are introduced to emphasize that both the elasticity
modulus and Poisson's ratio will determine unloading-reloading behaviour. Now it follows from
the above equations that:

A (1-28)

€0 =¢S +E5+es = A (‘9198(1 op 5p8q> _ op" _

0o oo, do}, -~ op’

Hence we define a = 0p®?/0p’. Together with Eqn. 11-25 (p. 124) and Eqn. 11-26 (p. 124) this
leads to:

*
A~k
*

sc eq 1 * eq " eq
c—D e+ %p, _ Dy LA (peq> BBP’ (11-29)
a Oo a T \pp o
where
Pyl = Py exp (_—Ev> (11-30)
P P AN — K
or inversely:
eq
—e¢ = (,\* — /i*) 1n<pfq) (11-31)

11.6  Formulation of elastic 3D-strains

Considering creep strains, it has been shown that the 1D-model can be extended to obtain the
3D-model, but as yet this has not been done for the elastic strains.

To get a proper 3D-model for the elastic strains as well, the elastic modulus E, has to been
defined as a stress-dependent tangent stiffness according to:

! t
Eu =3 (1 - 2vm> Ky = —3(1 - 2vw> (Mc—cf(@> (11-32)

K

Hence, E,, is not a new input parameter, but simply a variable quantity that relates to the input
parameter x*. On the other hand v, is an additional true material constant.

Hence similar to E,;,, the bulk modulus K, is stress dependent according to the rule

kur = —(p' + ¢ COt(p)*/K,* where in this context c is again the effective cohesion rather than the
creep parameter. Now it can be derived for the volumetric elastic strain that:

./ U
e p . * P
v =K, T TR Trccot(p)

or by integration : (11-33)

ey prccot(p)
&y =k In (p(ﬁ-ccot(w)

Hence in the 3D-model the elastic strain is controlled by the mean effective stress p’, rather
than by principal effective stress ¢' as in the 1D-model. However the mean effective stress
can be converted into principal stresses. For one-dimensional compression on the normal

consolidation line, we have both 3 p' = (1 + 2K{*) ¢’ and 3 pj, = (1 + 2K{*) o, and it follows
that p'/py = o’ /0. As a consequence, for ¢ = 0, we derive the simple rule —¢¢ = £ In o’ /d),
whereas the 1D-model involves —¢$ = a In ¢’ /a},. It would thus seem that k* coincides with a.
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Unfortunately this line of thinking cannot be extended toward overconsolidated states of stress
and strain. For such situations, it can be derived that:

P 1+v, 1 4 (11-34)
p 1—w, 142K, o

and it follows that:

* .1
.e *15’_1+Uur K o
—éo=kK L =

v P 1—v, 1+2K) o
where Ky depends to a great extent on the degree of over-consolidation. Assuming that for soft

(1-35)

clay the friction angle @ is in the order of 20-30° and OCR is in the order of 2-3, it is reasonable

to assume Ky=1and together with v, 0.2 one obtains -2¢, ¢ ~ k*In(c'/c'o). Good agreement
with the 1D-model is then found by taking k* ~2a. Note that for clays with significantly different
friction angles and/or degrees of consolidation good agreement with practical results may be
found for values of both k* <2a or k* >2a.

1.7 | Formulation of failure condition

The creep formulation does not include failure. Therefore, a Mohr-Coulomb type failure criterion,
formulated in a perfect-plasticity framework, is added to the Soft Soil Creep model, generating
plastic strains as soon as the failure condition is met. As soon as the Mohr-Coulomb failure

yield criterion f(o', ¢, ¢) = 0 is met, instantaneous plastic strain rates develop according to the

flow rule €’ = A\dg/da’ with g = g (0" ). For details see 3 Linear Elastic Perfectly Plastic Model
(Mohr-Coulomb Model) (p. 31).

In each stress point, the stresses are calculated according to the creep formulation before
considering the failure criterion. Subsequently, the new stress state is checked against the
failure criterion and corrected, if applicable.

11.8 | Parameters of the Soft Soil Creep model

In addition to the parameters of the Soft Soil model, the Soft Soil Creep model involves a creep
parameter in the form of the modified creep index u*. Figure 11.4 shows the PLAXIS window for
inputting the values of the model parameters.
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Soil - Soft Soil Creep - «NoMName>

J e O
Genersl Mechanical Groundwater Thermal Interfaces  Initial
Property Unit Value
Stiffness
A {lambda®) 0.000
k" (kappa®) 0.000
T 0.000
Vi 0,1500
Alternatives
Use alternatives |
0.000
0.000
0.000
0.5000
Strength
Shear
€ roF ki m?2 5,000
@' (phi) @ 25,00
W (psi) s 0,000
Tension
Tension cut-off
Tensile strength kM/m2 0.000
Miscellaneous
Use defaults
0.5774
2.413
Mext QK Cancel

Figure 11-4: Mechanical tabsheet for the Soft Soil Creep model

In conclusion, the Soft Soil Creep model requires the following basic parameters and material
constants:

Material constants:

A Modified compression index [-]
K* Modified swelling index [-]
u Modified creep index [-]
Vur Poisson's ratio for unloading - reloading (default 0.15) [-]

Basic strength parameters :

C'ref Effective cohesion [kN/m?]

[0} Friction angle [°]
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1} Dilatancy angle [°]

ot Tensile strength [kN/mz]

Miscellaneous parameters ( use default settings):

K¢ o'xx/ 0'yy stress ratio in a state of normal consolidation [-]

M Ko "¢ -related parameter (see below) [-]

Instead of defining the stiffness by the basic stiffness parameters, alternative stiffness
parameters can be used. These material constants are given by:

Ce Compression index [-]
Cs Swelling index [-]
Cq Creep index for secondary compression [-]
Einit Initial void ratio [-]

11.8.1/ Modified swelling index, modified compression index and modified
creep index

These parameters can be obtained from an isotropic compression test including isotropic
unloading. When plotting the logarithm of the mean stress as a function of the volumetric strain
for clay-type materials, the plot can be approximated by two straight lines (see Figure 101

(p. 10)). The slope of the primary loading line gives the modified compression index, and the
slope of the unloading (or swelling) line gives the modified swelling index. Note that there is a
difference between the modified indices k* and A* and the original Cam-Clay parameters k and
A. The latter parameters are defined in terms of the void ratio e instead of the volumetric strain
€,. These relationships are summarised in Table 4. The parameter u* (Table 11-2 (p. 129))

can be obtained by measuring the volumetric strain on the long term and plotting it against the
logarithm of time (see Figure 11-1 (p. 120)).

Apart from the isotropic compression test, the parameters A*, k* and u* can be obtained from a
one-dimensional compression test. Here a relationship exists with the internationally recognised
parameters for one-dimensional compression, swelling and creep indices, C., Cs and C, . These
relationships are summarised in Table 6.The factor 2.3 in Table 11-3 (p. 129), is obtained from
the ratio between the logarithm of base 10 and the natural logarithm. The alternative stiffness
parameters can also be calculated from this table. Since the void ratio e is not a constant, in the
conversion from the alternative parameters to the original model parameters in PLAXIS the void
ratio e is defined as the initial void ratio e;,;;. Entering a particular value for one of the alternatives
C., Cs or C, results in a change of A*, k* or u*, respectively.

For a rough estimate of the model parameters, one might use the correlation A* =~ 1,(%)/500, the

fact that A*/u* is in the range between 15 to 25 and the general observation A*/k* is between 2.5
and 7.

Table 11-1: Relationship to Cam-Clay parameters
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Table 11-2: Relationship to a,b,c parameters

A*=b K~ 2(1+2Ko)a~2a p*=c

Table 11-3: Relationship to internationally normalised parameters

*_ C. * o 2 G * o1 _Ca
A= 2.3(1+e) k=3 B~

2

w
—~
[
+
)
~—|

© Note:

As already indicated in 11.6 Formulation of elastic 3D-strains (p. 125), there is no exact
relation between the isotropic compression index k* and the one-dimensional swelling
indices a and C,, because the ratio of horizontal and vertical stress changes during

one-dimensional unloading. For the approximation it is assumed that the average stress
state during unloading is an isotropic stress state, hence Kyp=1. This is a reasonable

assumption for moderately overconsolidated clays with a friction angle in the range of
20°-30°.

For characterising a particular layer of soft soil, it is also necessary to know the initial pre-
consolidation pressure op. This pressure may, for example, be computed from a given value of

the overconsolidation ratio (OCR). Subsequently, 0, can be used to compute the initial value

of the generalised pre-consolidation pressure p,c}q (see 2.8 The initial pre-consolidation stress in
advanced models (p. 27)).

11.8.2 | Poisson's ratio

In the case of the Soft Soil Creep model, the Poisson's ratio is purely an elasticity constant rather
than a pseudo-elasticity constant as used in the Mohr-Coulomb model. Its value is usually in

the range between 0.1and 0.2. If the standard setting for the Soft Soil Creep model parameters
is selected, then the value v, with a default of 0.15 is automatically adopted. For loading of
normally consolidated materials, the Poisson's ratio plays a minor role, but it becomes important
in unloading problems. For example, for unloading in a one-dimensional compression test
(oedometer), the relatively small Poisson's ratio will result in a small decrease of the lateral
stress compared with the decrease in vertical stress. As a result, the ratio of horizontal and
vertical stress increases, which is a well-known phenomenon for overconsolidated materials.
Hence, the Poisson's ratio should not be based on the normally consolidated Ky “-value, but on
the ratio of difference in horizontal stress to difference in vertical stress in oedometer unloading
and reloading:

V’U/l‘ J— AU.Z‘I
1-vy, Aoy,

(Unloading and reloading) (11-36)

11.8.3! K(°- parameter

By default, M is automatically determined based on the coefficient of lateral earth pressure in
normally consolidated condition, K¢, as entered by the user. The exact relationship between M
and K¢ can be formulated as Brinkgreve (1994):

nec 2 _ ne _ * *
M (1- Ky 4 (1-K§)(1 *2VZT) (A/K" —1) (1-37)
(o) (1= 2K5%) (1= 2ua)N/n" = (1= K§7) (14 v)
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Hence the user cannot enter directly a particular value of M. Instead he can choose values for

K. Note that the particular selection of M has an influence on lateral deformation of pseudo-
vertical loading problems. For details, see Brinkgreve (2004).

M ~ 3.0 — 28K} (11-38)

11.9 | State parameters in the Soft Soil Creep
model

In addition to the output of standard stress and strain quantities, the Soft Soil Creep model model
provides output (when being used) on state variables such as the isotropic pre-consolidation
stress p,. These parameters can be viewed by selecting the State parameters option from the

Stresses menu. An overview of available state parameters is given below:

Equivalent isotropic stress
Pea Peq =P+ ¢*/M?(p' + ccot (¢)) -
Pp Isotropic pre-consolidation stress (-]
Isotropic overconsolidation
PR oo =/ &

11.10 | On the use of the Soft Soil Creep model
in dynamics calculations

When using the Soft Soil Creep model in dynamics calculations, the modified swelling index
k* needs to be selected such that the model correctly predicts wave velocities in the soil. This
generally requires a smaller value than just an unloading-reloading index.

When subjected to dynamic or cyclic loading, the Soft Soil Creep model will generate plastic
strains when the preconsolidation stress is increased. However, it should be noted that stress
cycles within the current creep contour will only generate elastic strains and no (hysteretic)
damping, nor accumulation of strains or pore pressure, nor liquefaction. In order to account for
the soil damping in cyclic loading, Rayleigh damping may be defined.

1111/ On the use of the Soft Soil Creep model
in practical applications

In the Soft Soil Creep model, creep strains are generated as long as there is effective stress. In
oedometer tests and other lab tests, self-weight stresses of the soil sample are negligible and

the effective stress in the sample is dominated by external loading conditions. However, when

it comes to practical applications, the effective stress in the soil is generally dominated by the

initial self-weight stresses. As a consequence, creep will occur without additional loading.

Following the formulation of the model, the rate at which creep strains occur highly depends
on the overconsolidation ratio as well as the ratio of the (modified) compression index over
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the (modified) creep index. Regarding the latter, it should be considered that natural clays may
involve structure (bonding) whilst the Soft Soil Creep model does not include such effects.

This requires the effective stress range in the application to be taken into account when
determining the compression and creep indices from one-dimensional compression tests. This
may also have an effect on the pre-consolidation stress to be used in the application. Moreover,
considering 'normally-consolidated' soft soil deposits in practice, it would seem logical to set the
initial OCR-value equal to 1.0. However, this would lead to unrealistic large creep strain rates due
to the initial stresses, without even considering additional loading.

In order to avoid these unrealistic creep strain rates, it is recommended to set the initial OCR-
value larger than 1.0. A value in the order of 1.2-1.4 will generally work, but in some cases even
higher values might be needed. Please keep in mind that this changes the pre-consolidation
pressure, such that the material becomes lightly overconsolidated and the pre-consolidation
stress may not correspond anymore to what is observed in compression tests.

The above may be validated from a practical viewpoint by considering that the layer has aged
since its deposition in geological history. Moreover, in particular the top few metres of an
existing soft soil layer have been subjected to various possible external influences (traffic,
weather, temperature changes, changes in saturation, etc.). Accurate measurements of the pre-
consolidation pressure on soil samples that are assumed to be 'normally-consolidated' would
typically show a pre-consolidation pressure that is noticeably larger than the initial effective
stress. However, lab tests are often performed on soil samples that have been disturbed to a
certain extent, and therefore the measurement of the pre-consolidation stress in practice is
often inaccurate.

In conclusion, the determination of model parameters for the Soft Soil Creep model requires
a cautious interpretation of test data, in view of the envisioned practical application. It is
recommended, before commencing any 2D or 3D analysis, to perform a careful calibration

of model parameters. This can be done by performing simulations using the PLAXIS Soil Test
facility in combination with an analysis of a one-dimensional soil column (based on the in-situ
soil layering), in which a realistic time interval is considered.
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The Sekiguchi-Ohta model [ADV]

The Sekiguchi-Ohta model has been developed to formulate a constitutive law for normally
consolidated clay. Particular emphasis is placed on taking the effect of time and stress-induced
anisotropy into consideration. A complete description of the model has been presented in
Sekiguchi & Ohta (1977) and lizuka & Ohta (1987).

12.1 Formulation of the Sekiguchi-Ohta
model

The Sekiguchi-Ohta model combines the concepts lying behind the well known Cam Clay model
(Roscoe, Schofield & Thurairajah (1963)) and the rheological model developed by Murayama &
Shibata (1966). The Cam Clay model was further developed by Ohta & Hata (1973) counting for
the stress induced anisotropy for anisotropically consolidated clays. However due to the fact
that this model deals with the stress-strain behaviour of the soil in equilibrium, the time effect is
not considered. The rheological model is further developed by Sekiguchi (1977) to describe the
time-dependent and elastoplastic behaviour for normally consolidated clays.

12.1.1! Isotropic states of stress and strain (o';=0'; =
0"3)

In the Sekiguchi-Ohta model, it is assumed that there is a logarithmic relation between changes
in volumetric strain, €,, and changes in mean effective stress, p', which can be formulated as:
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!
€0 — sg = A'In (;)_0> <m’rgin compression) (12-1)

The parameter A" is the modified compression index, which determines the compressibility of

the material in primary loading. Note that A" differs from the index A as used by Burland (1965).
The difference is that Eqn. 12-1 (p. 133) is a function of volumetric strain instead of void ratio.
Plotting Egn. 12-1 (p. 133) gives a straight line as shown in Figure 12-1 (p. 133).

During isotropic unloading and reloading a different path (line) is followed, which can be
formulated as:

!
e — el = — & In (5_0> (unloading and reloading) (12-2)

The parameter K is the modified swelling index, which determines the compressibility of the

material in unloading and subsequent reloading. Note that k" differs from the index k as used

in the Cam-Clay models. The ratio A*/K* is, however, equal to the ratio A/k. The soil response
during unloading and reloading is assumed to be elastic as denoted by the superscript e in Eqgn.
12-2 (p. 133) . Egn. 12-2 (p. 133) implies linear stress dependency on the tangent bulk

modulus such that:

E,, p
Ky=——w P -
v gy = (12-3)

in which the subscript ur denotes unloading/reloading. Neither the elastic bulk modulus, K, nor

the elastic Young's modulus, E,, is used as an input parameter. Instead, v, and k" are used as
input constants for the part of the model that computes the elastic strains.

An infinite number of unloading/reloading lines may exist in Figure 12-1 (p. 133), each
corresponding to a particular value of the isotropic pre-consolidation stress p,. The pre-
consolidation stress represents the largest stress level experienced by the soil. During unloading
and reloading, this pre-consolidation stress remains constant. In primary loading, however, the
pre-consolidation stress increases with the stress level, causing irreversible (plastic) volumetric
strains.

»np'

Figure 12-1: Logarithmic relation between volumetric strain and mean stress

12.1.2 | Inviscid (time-independent) formulation

The yield function of the inviscid model in triaxial space is expressed by the following equation:

, _
f=MD ln<p—> + DL (12-4)
Dp p
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- - 1
§=y3J andJy=< (52, + 55, +52) + 52, + 5., + 52, (12-5)

where
M = Critical state frictional parameter.
D = Coefficient of dilatancy.
p' = Mean effective stress.
Pp = Isotropic hardening stress parameter.
q = Relative deviatoric stress
5 = s —pn. where qand " are defined as follows:
-Uxx - p-
Oy — P
Oz — P
s=| “ andn, = % (12-6)
Uzy P
Oyz
L Oz |
_Urz ' 2 pnacz-
Oyy — P — Py
0' p— p—
Ozy — DNzy
Oyz — PNy
| Ozz — DNze i
Ogzt0yy+0:,

The isotropic stress p = 3

Me can be calculated by assuming initially normally consolidated:
T . 17K’n£ l_KTLC I_K’ILC
Ne = (_ ke 23kr 2k 00 O> (12-8)

It is assumed that the model follows the associted flow rule: g=f

The isotropic hardening stress parameter of the model is defined as:

(52—550) ~
Dp = Ppo€ MP (12-9)
where
MD - A -k
550 = Initial plastic volumetric strain

The relative deviatoric stress is defined as:

Hence, the parameter D is an auxiliary parameter implicitly defined as D = (A*-K*)/IVI.
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12.1.3 | Viscid (time-dependent) formulation

The flow function of the visco-plastic (viscid) model is written as:

* Uot
F=a ln<1 + U%exp(@)) —el=0 (12-10)
a (87
where
, _
fo)=MpmZ +pl (12-1)
Dy p
The flow function F can be transformed to a function of stress and hardening parameter g as
follows:
g(o',h) = f(0') — h(e?,t) =0 (12-12)
where the hardening parameter h is defined as:
a’ e
h(eF,t) = a ln{.— [exp( = ) — 1] } (12-13)
Vot a

The initial time to calculate the hardening parameter h should not be zero, because it is not
determined due to 7/t in Egn. 12-13 (p. 135) . To be able to calculate the initial volumetric
visco-plastic strain, it is assumed that the hardening parameter h is equal to zero. Hence, the
initial visco-plastic volumetric strain can be calculated as follows:

. a” el
h(e)l,t) = a ln{,— [exp( " > -1 ] } =0 (12-14)
’U()t a
w e [ ot
€,0 = In —+1 (12-15)
a

e.0 is used as the initial visco-plastic volumetric strain to calculate the current visco-plastic
volumetric strain.

12.2 | Parameters of the Sekiguchi-Ohta
model

12.2.1 Model parameters of the inviscid model

* Basic parameters for soil stiffness:

A* Modified compression index [-]

K* Modified swelling index [-]

* Alternative parameters can be used to define soil stiffness:

Ce Compression index [-]
Cs Swelling index or reloading index [-]
Cinit Initial void ratio [-]
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* Advanced parameters for soil stiffness:

Vur Poisson's ratio for unloading-reloading [-]

Kj* Coefficient of lateral stress in normal consolidation [-]

® Parameters for soil strength:

M Tangent of the critical state line [-]

12.2.1.1 Modified compression index and modified swelling index (A* and K )

These parameters can be obtained from an isotropic compression test including isotropic
unloading. When plotting the logarithm of the mean effective stress as a function of the
volumetric strain for clay type materials, the plot can be approximated by two straight lines, see
Figure 12-2 (p. 136). The slope of the primary loading line gives the modified compression

index A" , and the slope of the unloading (or swelling) line gives the modified swelling index K.

(‘iv

>lnp'

Figure 12-2: Logarithmic relation between volumetric strain and mean stress

12.2.1.2 ! Poisson's ratio (v,,)

The poisson's ratio v, is a real elastic parameter and not a pseudo-elasticity constant as used in
the Mohr-Coulomb model. Its value will usually be in the range between 0.1and 0.2.

12.2.1.3 | Earth pressure coefficient at rest ( Ky“)

The Ko " parameter is defined as the stress ratio in one-dimensional compression in a state of

normal consolidation:
!/

o
nc __ T
vy

The K¢ -parameter determines the singular point in the Sekiguchi-Ohta model yield contour.
Hence, K relates to the inclination of the stress path in one-dimensional compression where
a, as described in the Eqn. 12-16 (p. 136) is the slope of the Ko " line in the p - g plane.

_ 31— Kp)

12-16
1+ 2K]° (12-16)
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Figure 12-3: The Sekiguchi-Ohta model yield surface in principal stress space

12.2.1.4 | Slope of the critical state line (M)

In order to obtain the correct shear strength, the parameter M should be based on the friction
angle . The critical state line is comparable with the Drucker-Prager failure criteria, and
represents a (circular) cone in the principal stress space. Hence, the value of M can be obtained
from ¢ in a similar way as the Drucker-Prager friction constant o is obtained from ¢. For details
see also the 8 Modified Cam-Clay model (p. 93) .

12.2.1.5 Initial overconsolidation ratio (OCR)

The initial overconsolidation ratio OCRy is defined as the highest vertical effective stress
experienced in the past, o'y, divided by the current stress o'y,. A soil which is currently
experiencing its highest stress is said to be normally consolidated and to have an OCR of 1.

12.2.1.6 | Initial pre-overburden pressure (POPy)

The initial pre-overburden pressure POP,, expressed in the unit of stress, is defined as:

_
POPy = T, — Oy
Op = vertical pre-consolidation stress (the greatest vertical stress reached
previously)
Oyy = In-situ effective vertical stress.

12.2.2 | Model parameters of the viscid model

Compared to the inviscid Sekiguchi-Ohta model, the viscid Sekiguchi-Ohta model requires

the coefficient of secondary compression a and the initial volumetric strain rate Vg as
two additional parameters of input. All other parameters remain the same as in the inviscid
Sekiguchi-Ohta model.

® Basic parameters for soil stiffness:

A* Modified compression index [-]
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K* Modified swelling index [-]

o* Coefficient of secondary compression [-]

Do Initial volumetric strain rate [day'1]

® Alternative parameters can be used to define soil stiffness:

Cc Compression index [-]
Cs Swelling index or reloading index [-]
Car Secondary compression index [-]
Einit Initial void ratio [-]

* Parameters for soil strength:

M Tangent of the critical state line [-]

* Advanced parameters for soil stiffness:

Vur Poisson's ratio for unloading-reloading [-]

Kj° Coefficient of lateral stress in normal consolidation [-]

12.2.2.1! Coefficient of secondary compression (a* )

The coefficient of secondary compression o is defined as:

* de,
~ d(nt) (12-17)
at time t. (the end of primary consolidation).
12.2.2.2 | Initial volumetric strain rate ( 7o)
The initial voltimetric strain rate v¢ at reference state is expressed as:
o = ‘z (12-18)

12.3 | State parameters in the Sekiguchi-Ohta
model

In addition to the output of standard stress and strain, the Sekiguchi-Ohta model provides output
(when being used) on state variables such as the isotropic pre-consolidation stress p, and the
isotropic overconsolidation ration OCR. These parameters can be visualised by selecting from
the Stresses menu in the State parameters option. An overview of available state parameters is
given below:

12.3 State parameters in the Sekiguchi-Ohta model | 138



Equivalent isotropic stress
!/

Peq P, = p—. [kN/mz]
ool )
Pp Isotropic preconsolidation stress [kN/m?]
Isotropic over-consolidation ratio
OCR [-]

(OCR = pP/p°?)
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The UDCAM-S model [ADV]

For the design of offshore structures under a design storm (i.e. a combination of wave, wind and
current loading), the stiffness and the bearing capacity of the foundation have to be calculated
accounting for the effect of cyclic loading. The response of saturated soils under cyclic loading
is different from the case of the static loading. It may be increased due to strain rate effects and
reduced due to the degradation process, pore pressure build-up and destructuration.

The soil strength in static undrained conditions can be described by the undrained shear
strength of the soil s, which is dependent on the effective stress level, stress path and the
material. However, by cyclic loading of the soil, the soil strength depends in addition on the value
of the combination of the average and cyclic stresses in the soil. The shear strength is therefore
written as Ty, instead of the static undrained shear strength s,,. The undrained cyclic shear
strength is described by Andersen, Kleven & Heien (1988), as:

Tey = (Ta + Tey) (13-1)
where

Ta = Average shear stress at failure.

ey = The cyclic undrained shear strength.

The two aforementioned stress components are shown in Figure 13-1 (p. 141)(Andersen &
Jostad, 2009), where the process of excess pore pressure build-up in cyclic loading is depicted.
The shear stress, the pore pressure and the shear strain are divided into two components: the
average component and the cyclic component. In a cyclic triaxial test the stress is varying with
the cyclic shear stress 1., with respect to the average shear stress 1,. The effective stress
decreases due to the increase in pore pressure and the stress paths move to the left, generally
defined as either 15% average shear strain or 15% cyclic shear strain. After a certain number of
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cycles N the soil reaches a failure strength. The same soil can thus fail at a lower shear stress in
cyclic loading than in monotonic loading.

T
Cyclic and average T, A /\ /%\y

shear stresses Ty \v/ \ / TC)‘WA Ta

time

Cyclic, average and

permanent pore

pressure generation

Cyclic, average and

permanent shear strains

time
(a) Pore pressure built up and shear strain accumu- (b) Decrease in effective stress due to cyclic loading (red line) and monotonic loading
lation during cyclic loading (blue line)

Figure 13-1: Generation of pore pressures and strains in a cyclic triaxial test

Stress anisotropy (or stress path dependent behaviour) is an important aspect regarding the
stability of a system. This means that the stress state is varying in the soil, and thus have to be
accounted for. As shown in Figure 13-2 (p. 141) (Andersen, 2015), the soil behaviour along

a potential failure surface, indicated by the dashed line, can be interpolated between by three
undrained cyclic laboratory tests:

* Direct Simple Shear test (DSS).
© Symmetric loading (74 = 0).
°  Asymmetric loading (t, # O).

* Anisotropically consolidated Triaxial Compression test (TXC).
* Anisotropically consolidated Triaxial Extension test (TXE).

Triaxi_al
extension

Triaxial
compression

Figure 13-2: Ideal stress conditions along a potential failure surface
in the soil beneath a gravity base structure under cyclic loading
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The Simplified UnDrained Cyclic Accumulation Model (UDCAM-S) is an advanced model to

deal with undrained soil behaviour and degradation of the strength and stiffness in cyclic
loading of clay or low permeable silty soils. The UDCAM-S model is derived from the UDCAM
model by NGI (Andresen & Jostad, 2009) with simplifications in order to be more suitable for
engineering practice. The material model is based on the NGI-ADP model (Andresen & Jostad,
1999) for the undrained behavior of clays, implementing a pre-processing procedure called
cyclic accumulation tool (Reference Manual - Chapter 6 - Cyclic accumulation and optimisation
tool ) to obtain the adjusted parameter set based on the type of analysis the user has to perform:

® Cyclic: to calculate cyclic displacements or stiffness to be used in dynamics analysis of the
structure.
* Average: to calculate accumulated (permanent) displacements of the foundation.

* Total: to calculate total (average + cyclic) displacements, capacity or stiffnesses to be used in
pseudo-static analysis of the structure.

Except from the calculation of the degraded parameter set with the cyclic accumulation tool, the
UDCAM-S model inherits the same formulation and implementation of the NGI-ADP model. For
more information about the formulation of the NGI-ADP model, reference is made to Chapter 9.

13.1/ Parameters of the UDCAM-S model

The UDCAM-S model requires a total of ten parameters.
The actual components can be cyclic, average or total (average + cyclic):

* Parameters for stiffness:

Gmax/TC Ratip unlogding/reloading shear modulus over (plane [-]
strain) active shear strength

Vs ¢ Shear strain in triaxial compression [%]

7 E Shear strain at failure in triaxial extension [%]

Yy bss Shear strain at failure in direct simple shear [%]

® Parameters for strength:

Degraded reference shear strength in triaxial

c 2
Tref compression [KN/m?]
Yref Reference level [m]
Increase of degraded triaxial compression shear
c 2
Tine strength with depth [kN/m*/m]

Ratio of degraded triaxial compression shear strength
TE/TC triaxial extension over degraded triaxial compression [-]
shear strength

TO/TC Initial mobilisation [-]

055, Ratio of deg'rao‘led direct simple shear strength over
degraded triaxial compression shear strength

* Advanced parameters:
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vy Undrained Poisson's ratio [-]

13.1.1! Ratio of the initial shear modulus to the degraded TXC shear strength
(Gmaw/"'c)

Ratio of the initial shear modulus to the degraded shear strength at failure in the triaxial

compression test. If the shear strength is increasing with depth the constant ratio for Ga./7¢
gives a shear stiffness increasing linearly with depth.

13.1.2 | Shear strain at failure in triaxial compression (vf)

This parameter WfC (%) defines the shear strain at which failure is obtained in undrained triaxial
compression mode of loading.

13.1.3 | Shear strain at failure in triaxial extension ('VfE)

This parameter W}E (%) defines the shear strain at which failure is obtained in undrained triaxial
extension mode of loading.

13.1.4 | Shear strain at failure in direct simple shear (77°°)

This parameter ’YJ?SS (%) defines the shear strain at which failure is obtained in undrained simple
shear mode of loading.

13.1.5 | Reference degraded TXC shear strength (Tﬁf)

The reference degraded TxC shear strength at failure in the triaxial compression test is the shear
strength obtained in triaxial compression stress paths at the reference depth Yref, expressed in
the unit of stress.

13.1.6 | Reference depth (Yrf)

This is the reference depth Yref at which the reference TXC shear strength +© is defined. Below
this depth the shear strength and stiffness may increase linearly with increasing depth. Above

the reference depth the shear strength is equal to T,gf.

13.1.7 | Increase of degraded TXC shear strength with depth (72,

The parameter 7C  defines the increase (positive) or decrease (negative) of the undrained TXC

mc

shear strength with depth, expressed in the unit of stress per unit of depth. Above the reference

depth the shear strength is equal to Tgf, below the reference depth the shear strength is defined
as:

0(y) =75+ (wres — v) 78 (13-2)
13.1.8 | Ratio of the degraded TXE shear strength to the undrained TXC shear
strength (77/7°)

The ratio 77 /7¢ defines the degraded undrained shear strength for triaxial extension mode of

loading in relation to the degraded undrained shear strength in triaxial compression mode of
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loading. Please note that active / passive strength input is defined for plane strain conditions.
However, it is generally acceptable and only slightly conservative to use the strength obtained

from a triaxial compression test as input for the active plane strain condition (i.e. t¢ A TC) and
the strength obtained from a triaxial extension test as input for the passive plane strain condition

ie. T =7).

13.1.9 | Ratio of the degraded DSS shear strength to the undrained TXC shear
strength (7755/7¢)

The ratio 7255 /7¢ defines the degraded undrained shear strength in direct simple shear mode
of loading in relation to the degraded undrained shear strength in triaxial compression mode of
loading.

13.1.10 | Initial mobilization (r,/7°)

The initial mobilization 7 /7¢ is clearly defined for nearly horizontally deposited normally
consolidated or lightly overconsolidated clay layers where the vertical stress is the major
principle stress ¢';. As defined in Figure 13-3 (p. 144), the initial mobilization can be calculated
from the earth pressure coefficient at rest Ky by the following equation:

70/7¢ = —0.5(1 — Ko)o,,0/7¢ (13-3)

where

Oyyo = initial (in situ) vertical effective stress (compression negative).

' i -_I\-
=0 0 45% Sy

v A i A
-Oos =Ky GI}'}'C-' Sy

3 - . A
—— TCI"I‘;uA =-0.5-(1-Ko) - GI_\'}'U-"Su

v A
-G0Sy

Figure 13-3: Definition of initial mobilised maximum shear stress 7
= 1/2 [6"yy0 - 6'xxol for a soil element in a horizontal deposited layer.

Changing the default value for the initial mobilization should be considered in particular for
overconsolidated materials where Ky generally is higher than 0.6, however the UDCAM-S model

(like NGI-ADP model) is not intended used for heavily overconsolidated clays and should be
used with care for Ky > 1.0 (i.e. negative TO/TC ).

13.1.11 Poisson's ratio (v')

Only Undrained (C) drainage option as a pure total stress analysis is carried out where no
distinction between effective stresses and pore pressures is made and all stress changes should
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be considered as changes in total stress. A Poisson's ratio of.v = 0.495 should be used for the

calculation.

13.2 | State parameters in the UDCAM-S

model
Yp Plastic shear strain [-]
re Hardening function [-]
\ Y/ E
Tk = 2—f (13-4)

13.3 1 On the use of the UDCAM-S model in

dynamics calculations

The model should not be used in dynamics calculations.
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The Concrete model [ADV]

Generally, for concrete structure elements, a linear elastic material model is adopted due to
their strength compared to the one of the soil. However, in some kind of geotechnical problems,
the complex non-linear behaviour of the concrete structures must be inspected for a reliable
redistribution of stress-strain in the continuum and a correct design. Distinction can be made
between the main features of the complex concrete behaviour: limited strength in compression
and tension, time-dependent strength and stiffness, strain hardening/softening, creep and
shrinkage.

The Concrete model was originally developed to model the behaviour of shotcrete, but it is

also useful for soil reinforcement (e.g. concrete columns), soil improvements (e.g. jet grouting
columns) and concrete structures (e.g. beams). The current engineering approach to model
shotcrete linings in numerical simulations assumes a linear elastic material with a stepwise
increase of the (artificially low) Young's modulus in subsequent excavation stages. While
realistic lining deformations may be obtained with this method, lining stresses are usually too
high, in particular if the lining is subjected to significant bending. With the Concrete model more
realistic stress distributions can be obtained, as the non-linearity of the material behaviour is
taken into account. Furthermore, the stability of the tunnel can be checked at all intermediate
stages without the need for additional capacity checks of the lining cross section.

The Concrete model is an elastoplastic model for simulating the time-dependent strength and
stiffness of concrete, strain hardening-softening in compression and tension as well as creep
and shrinkage (Schadlich & Schweiger, 2014). Hence, differently from what is seen in Egn. 3-1

(p. 32) , the total strain € is not only decomposed into elastic strain €° and plastic strain €” but

. . . . h
also considers creep strain € and shrinkage strain €*" :

e=€ef+eP +eT+e (14-1)

When subjected to deviatoric loading, concrete shows different behaviours: in compression,
the strength increases non-linearly up to a peak value and then softens to a residual one; in
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tension, it's considered linear elastic until reaching the tensile strength and then softens to
the residual value. The Concrete model employs a Mohr-Coulomb vyield surface for deviatoric
loading, combined with a Rankine yield surface in the tensile regime.

Most of the input parameters for the Concrete model can be derived from standard uniaxial
tension and compression tests. Some basic characteristics of the Concrete model and their
relevant input parameters are:

Limited strength in compression and tension. fc,28: ft 28
Time-dependent strength and stiffness. for/fe28 Er/ Ezg, gP con thyar
Strain hardening in compression feon

Strain softening in compression and tension fefni feuni Ge, 281 fruni Gt 28
Stress- and stiffness-dependent creep strains ot
Stress-independent shrinkage strains &.ggr ’ tggr

The stress-strain approach for hardening and softening is proposed by Schutz, Potts

& Zdravkovi'c (2011), involving mobilised compression and tensile strength through the

uniaxial plastic peak strain € at 1h, 8h, 24h and the fracture energy of the material both

in compression, G, and in tension, G;. Furthermore, thanks to the time-dependent internal

laws of the Concrete model for f, f;, G; and G;, the hardening-softening of the yield surfaces
completely follows the evolution of the material in time. The time-dependency of elastic
stiffness, compressive and tensile strength is taken into account following an approach similar to
the recommendation of CEB-FIP model code (1990) as well as EN 14487-1. The ability of young
concrete to withstand large deformations at early age, thanks to its initial high plastic ductility, is
represented by a time-dependent plastic peak strain €, (Meschke, Kropik & Mang, 1996).

141/ Formulation of the Concrete model

The Concrete model employs a composite yield surface; Mohr-Coulomb surface for deviatoric
loading and Rankine surface in the tensile regime with isotropic compression softening (Figure
14-1 (p. 148)). In the Concrete model formulation, the yield function is named with capital F in
order to distinguish it from the yield stress f. The sign convention is strictly tension-positive and
o7 is the major (tensile) principle stress and o3 is the minor (compressive) principle stress.

The yield functions can be formulated in terms of principal stresses in relation to the uniaxial
compressive and tensile yield stresses, f., and f, as:

01—03 01+03— 200 fey
F, = + 14-2
¢ 2 2 200t + fcy ( )
Fy = 01— f; (14-3)
where
Orot = Intersection of the Mohr-Coulomb failure envelope and the isotropic axis.
For a given maximum inclination of the Mohr-Coulomb envelope, o,,: can be written as:
Jfe 1
rot — ~ \ —W 7~ — ]- —
72\ sin@mar) (14-4)
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Figure 14-1: Yield surfaces and failure envelope for Concrete model

14.2 | Strain hardening and softening

14.2.1/ Compression

In compression, the Concrete model follows the approach proposed by Schitz, Potts &
Zdravkovi'c (2011). The stress-strain curve is divided in four parts (Figure 14-2 (p. 148)):

® Part| - quadratic strain hardening
* Partll - linear strain softening

® Part Il - linear strain softening

® Part IV - constant residual strength

Due to the time-dependency of the involved material parameters, a normalised hardening/
softening parameter H, = 65/8& is used, with 6§ = minor plastic strain (calculated from F.) and

ety = plastic peak strain in uniaxial compression.

G,/ A

1.0
f

cfn

cOn

cun

Figure 14-2: Normalised stress-strain curve in compression
In part I, the uniaxial yield stress f., is mobilised with H; according to a quadratic function:

fcy,] == fc (chn + (]- - chn) (2Hc - Hc2)) (14_5)
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where fcop is the initial ratio fc, / fc. During mobilisation the yield surface F. rotates around the
anchor point o,,; on the isotropic axis, activating the shear isotropic hardening.

Full mobilisation of f, coincides with H. = 1, after which (i.e. part Il) linear softening takes place,

until the failure strength fcr = fcsn fc is reached at Hey= Eff/Egp. Strength reduction is assumed

to be caused by the destruction of inter-particle bonds, and consequently a parallel shift of the
fully mobilised Mohr-Coulomb failure envelope:

H,. —
feyr1 = fe (1 + (fen — 1) <T11>> (14-6)

where E‘Jc)f is derived from the fracture energy in compression, G, and the characteristic length
of the finite element, L4, Which provides the necessary regularisation to avoid mesh dependent
numerical results:
2G
p _ _p ¢
€ = Ep — 14-7

T T Jop) e B 47
Leg is calculated by PLAXIS from the size of the finite element, A, and the number of stress
points per element ngp, (Polling, 2000):

Ael
Ly = 2 ——— (14-8)
! V3ngp

O Note: When using the SoilTest with the Concrete Model, since there is no mesh, Leg = 1.

In part lll the linear strain softening is governed by the condition that the energy in elastic
unloading must not be greater than the plastic strain energy absorbed by the crack (no span-

back of stress-strain curve on stress point level). That delivers the plastic ultimate strain €%, as:

P 2fc (fcfn - fcun)

y
Eou = Eof T

with fcun = residual strength level = f., / fc and E = elastic Young's modulus. The yield stress F,
follows as:

H.— H,
fcy,III = fc (fcfn + (fcun - fcfn) (ﬁ)) (14—10)

(14-9)

where H,,, = ek, /eh,. In part IV, there is no further softening of the stress-strain curve, which
yields:
fcy,IV = fc fcun (14—11)

To account for the increasing ductility with increasing confining pressure, the total peak strain
Ecp = Erp + Ecp increases with the confining pressure, oy, as in a triaxial compression test,
governed by the input parameter a:

Eep = EepUC (1 +a > (14-12)

o1
—Jfe
For instance, a = Tand o7 = -f; yield a 100% increase of total peak strain £., compared to the
uniaxial compression test. Internally, the increase of €, is translated into an increase of 6€p,

which is assumed to be governed by the mean stress p = (01 + 02 + 03)/3 according to:
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+ fe/3
el = <0 (1 +b%> (14-13)
2811 (Omaz) 2 + a(l — sin(@maz)) (€8 — L&
| Zsinlpnan)f + a1 = sin(one) (¢ — %) o)

5{2)17 (1 — sin(Pmaz)/3)

14.2.2 | Tension

The Concrete model behaviour in tension is linear elastic until the tensile strength f; is reached,
then softens with a linear strain softening (Figure 14-3 (p. 150)). The strain softening is
governed by the normalised tension softening parameter H; = €/ /e, with €} = major principal
plastic strain (calculated from F;) and %, = Plastic ultimate strain in uniaxial tension as:

fry = fr (L+ (frun — 1) He) (14-15)
Similar to softening in compression, €7, is derived from the fracture energy in tension, G
oo 2G: (14-16)
tu (1 + ftun)ft Leq
Once the residual strength f;, = fiun ft is reached, no further softening takes place.
Gl/ftA
1.0
I
- I
Sy
§ 1 } l ffIU’i
- 1 ] l ) fe] i )
fp fru Hy, = 1.0 H,

Figure 14-3: Tension softening

14.3 | Time-dependency of the Concrete
model

14.3.1! Strength and Stiffness

The Concrete model takes into account the time-dependent behaviour of material parameters.
The stiffness and strength of concrete increase rapidly with time due to the hydration of the
cement paste. The increase of Young's modulus E in the model follows an approach similar to
the recommendation of CEB-FIP model code (1990):

E(t) _ E28 esstiff (1*\/thydr/t> (14_17)

where

14.3 Time-dependency of the Concrete model | 150



Exg = Young's modulus of cured concrete.

thyar = Time until full curing (e.g. usually taken as 28 days).
t = time (days).
Sstiff = Parameter governing stiffness evolution with time.

Sstiff is related to the stiffness ratio at 1day, E;/ Eog, and tpyqy, as:
ln(El/Ezg)

Sstiff — — —/—— (14-18)
V thyar/t1a — 1

where ty4 is the duration of one day in the unit time. The Young's modulus is constant for t<1h
and for t>tyyqy -

For the uniaxial compressive strength f., the Concrete model implements two different
approaches. The first, as for E, is similar to the recommendation of CEB-FIP model code (1990)
for concrete. The relations are the same as before but exchanging Sjsr With Sggrengtn, Which

depends now on the strength ratio at 1day, f. 1/ fc 28, and tyyqr (equations Eqgn. 14-19 (p. 157)
and Egn. 14-20 (p. 151) ). A lower limit of fo = 0.005 f. »g is used at very early age. The CEB-
FIP type approach yields very low concrete strength at ages <2h.

£u(t) = Fogg e (V) (14-19)
ln(fc,l/fc,28)
Sstrength

= — MG /6% (14-20)
V thyar/t1a — 1

Alternatively, the strength evolution can be modelled in accordance to the shotcrete strength
classes J1, J2 and J3 of EN 14497-1, which define ranges of shotcrete strength at different
shotcrete ages up to 24h. Mean values of these ranges have been assumed for class J1and J2
in the Concrete model with class J3 lying 50% above the boundary between classes J2 and J3
(Table 14-1 (p. 151)). Between 24h and ty,q, an approach proposed by Oluokun, Burdette &

Deatherage (1991) is adopted:

fo = ae b/ (14-21)
fc,28

ac = mbc = (—thydr/ (thyar — t1d))In(K)k = feoan/ fe28 (14-22)

where f. is the time-dependent compressive strength and f; 245, is the compressive strength at
24h (Table 14-1 (p. 151)).

Table 14-1: Mean uniaxial compressive strength of J1, J2 and J3 strength classes

Time[hr] J1[MPa] J2[MPa] J3[MPa]
<01 0.15 0.35 0.75
0.5 0.23 0.715 1.65
12 2.0 5.5 12.0
24 3.5 12.0 28.5

The ratio of f;/ f. and the values of fcf,, fcun and fyn are assumed to be constant in curing for
both approaches.
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14.3.2 | Plastic Deformability

The ability of young concrete to withstand large deformations is not only a result of its low
elastic modulus at this age, but also due to its high plastic ductility. With concrete aging this
ductile behaviour decreases.

In the Concrete model this behaviour is represented by a time-dependent plastic peak strain
Ezc)p. Similar to the approach proposed by Meschke, Kropik & Mang (1996), a tri-linear function in

time is adopted. Input values are the plastic peak strains at t = 1h, 8h and 24h. Beyond 24h, E:Ic)p is
assumed to be constant (Figure 14-4 (p. 152)).

O Sezaki et al. 1989
-3.0 1 A Wierig 1971
v  Golser et al. 1991
proposed function
o\'? -2.0
w%
-1.0
0 o]
v A
OO T T TTT T T T T TTTTg IV!IIIIH| T T T T 1117
0.1 1 10 100 1000

time [h]

Figure 14-4: Reduction of %, with aging in the Concrete model compared to experimental
data from uniaxial compression tests. The chosen £, values are -3%, -0.5% and -0.2%.

14.3.3 | Fracture energy

The plastic time-dependency during softening is taken into account with the change of fracture
energies with time, which is automatically computed by PLAXIS. In tension, the tensile failure
strain 8§’u is derived from the tensile fracture energy and tensile strength of the cured concrete,
regardless of the current concrete age. Since the tensile strength f; increases with time, but &},
remains constant, the current fracture G; increases proportionally with the increase of f;.

The plastic failure strain in compression, €Zf, is coupled to the plastic peak strain €5, such that

the ratio 6€f/6€p remains constant. As €5, decreases with time (Figure 14-4 (p. 152)), 8€f and
hence G, reduce. On the other hand, the compressive strength f. increases with time, which
results in higher values of G.. The influence of these counteracting trends brings high values
of the fracture energy at early age, a sharp drop at =12h and a linear increase of G, with f,

afterward (Figure 14-5 (p. 153)). The high fracture energy at very early age is a consequence
of the desired ductile behaviour at this stage. As very young concrete effectively does not fail at
all in compression, the fracture energy theoretically should be infinite.
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Figure 14-5: Stress-strain curves in uniaxial compression at different ages
and development of compressive fracture energy with compressive strength

14.3.4 | Viscoelastic Creep

The Concrete model employs a viscoelastic approach for creep. Creep strains, e, increase
linearly with stress o and are related to elastic strains via the creep factor (pcr :

607‘ (t) —

The evolution of creep with time t is governed by the start of loading at time ty and the

parameter t5;. For instantaneous loading (tp = 0), t5, equals the time until 50% of the creep
strains have evolved. For concrete utilization higher than 45% of f., non-linear creep effects are

(,OCTO' t—1o
D t+tg

(14-23)

accounted for by replacing ¢ with the following equation from Eurocode 2:
(PZT — (pCT6145(k070.45) (14_24)

with k; = 0. / fem being the degree of concrete utilisation in compression. Due to the time-
dependency of the linear elastic stiffness matrix D¢, the creep history is stored as normalised
values of € (t) - E(t).

© Note:

The creep history is adjusted for the stress state at first activation of the concrete
cluster, such that no creep strains are produced by initial stresses. The state variables
are taken over if the previous material was also defined with the Concrete model, in
which case creep will also continue. If a reset of state variables is desired, a nil step with
a different material (e.qg. linear elastic) is required.

14.3.5 | Shrinkage

The Concrete model refers to shrinkage as the isotropic loss of volume with time, which

is independent of the stress state. Shrinkage strains e are calculated according to the
recommendation of ACI (1992) as:
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ehr(t) = e

with 2" being the final axial shrinkage strain and 2o

occurred.

shr
00

t
h
t+ te

shr

(14-25)

the time when 50% of shrinkage has

14.4 | Parameters of the Concrete model

The Concrete model involves a number of parameters which are generally familiar to structural
engineers. These parameters with their standard units are listed below.

® Parameters for stiffness:

Eyg Young's modulus of cured concrete at tyqr [kN/m?]
v Poisson's ratio [-]
* Parameters for strength:
Compression parameters
fe,28 Uniaxial compressive strength of cured concrete at ty 4 [kN/mZ]
feon Normalised failure strength -]
fefn Normalised initially mobilised strength [-]
feun Normalised residual strength [-]
Ge 28 Compressive fracture energy of cured concrete at tyqr [KN/m]
Pmax Maximum friction angle [°]
1] Dilatancy angle [°]
Yc Safety factor for compressive strength [-]
Tension parameters
ft 28 Uniaxial tensile strength of cured concrete at tp 4, [kN/mz]
ftun Ratio of residual vs. peak tensile strength [-]
Gt 28 Tensile fracture energy of cured concrete at tyqr [KN/m]
Vst Safety factor for tensile strength [-]
* Parameters for ductility:
e’c’p Uniaxial plastic failure strain [-]
a Increase g, with increase of p [-]
* Time-dependent parameters:
thyar Time for full hydration [day]

Stiffness parameters
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E;/E,g Time-dependency ratio of elastic stiffness [-]
Strength parameters
fe1/ fec 28 Time-dependency of compressive strength [-]
Ductility
8]c)p,1h Uniaxial plastic failure strain at 1h (negative value) [-]
Efp,sh Uniaxial plastic failure strain at 8h (negative value) [-]
6121,,24,1 Uniaxial plastic failure strain at 24h (negative value) (-]
Shrinkage
egé”‘ Final shrinkage strain (negative value) [-]
tg{)“‘ Time for 50% of shrinkage strains [day]
Creep
o Ratio between creep and elastic strains [-]
teh Time for 50% of creep strains [day]

The Concrete model allows two drainage types: non-porous, which is the general approach for
concrete structural elements, and drained, in case of semi-permeable walls or tunnel linings.

14.4.1' Recommended values for the parameters of the
Concrete model

14.41.1 Elastic parameters

Differently from the Mohr-Coulomb model, the Concrete model employs time-dependent
stiffness. If Time dependent strength and stiffness is turned off then the editing of E;/ Eog is

disabled and it's set to 1. If Time dependent strength and stiffness is turned on, a E;/ E»g is
defined, generally a range of 0.5 - 0.7 is recommended with E,g between 25 GPa and 30 GPa.

14.4.1.2 | Strength in compression

The uniaxial compressive strength of cured concrete f; »g can be derived from uniaxial
compressive test results. The time-dependency of compressive strength expressed as f. 1/ f¢ 28

is recommended in the range of 0.2-0.3 for cast concrete, whilst it depends on the strength
class (i.e. J1, J2 and J3) for shotcrete. The stress-strain curve in compression (Figure 14-2 (p.
148)) is defined through the normalised strength values. The normalised mobilised strength
fcon contributes to the part | hardening, a value in the range of 0.1 - 0.25 is recommended. The

normalised failure strength f.s, rules the part Il softening, a value of 0.1is recommended. The
normalised residual strength f.,, rules the part lll softening and the residual strength, a value of
0.1is recommended. f s, must be greater or almost equal to f¢, in order to avoid input error. fcf,
or foun = 1implies no softening in the respective regions.
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14.4.1.3 | Time-dependency of compressive strength

The uniaxial compressive strength is defined at the time ty,,, time for full hydration (usually 28
days). If Time dependent strength and stiffness is turned off then f. 1/ fc 25 is set automatically

equal to 1 and the editing is disabled. If Time dependent behaviour is turned on, then the user
can choose in the combo box Strength functions among:

® CEB-FIP model code (1990): the user can define f. 1/ f; 2g. The default value = 1 corresponds
to no time-dependency. For cast concrete a value of [0.2, 0.3] is recommended.

® Shotcrete strength class J1: fc 1/ fc 28 is automatically computed in accordance with the
selected strength class (Table 14-1 (p. 151)).

® Shotcrete strength class J3: f. 1/ fc 28 is automatically computed in accordance with the
selected strength class (Table 14-1 (p. 151)).

14.4.1.4 | Strength in tension

The tensile strength f; g can in principle be derived from uniaxial tensile test results. Due to the
experimental difficulties involved in these tests, however, indirect tests or direct correlations with
the compressive strength are more common. Both for concrete and shotcrete, a value of f; g =
0.1f. is recommended. The ratio of residual vs. peak tensile strength f;,, is recommended to be
0.

© Note:

In shotcrete linings the tensile strength is essential for tunnel stability. Neglecting or
considering low values of it could result in unrealistic failure.

14.4.1.5 | Parameters ®nqx, Y and a

Determination of @qx, Y and a requires triaxial tests on cured concrete. The impact of these

parameters in typical tunnelling calculations, however, is small, as at least one of the major
principal stresses in the lining is close to 0. Furthermore, not all of these will be typically
available, so values in the range of 35°- 43° 0°- 10° and 16 - 20 are respectively suggested for

®max, ¥ and a.

14.4.1.6 | Fracture energy

The compressive fracture energy of cured concrete G »g can be estimated from the stress-
strain curve of uniaxial compression tests. However a value in the range of 30kN/m - 70kN/m

is recommended. The tensile fracture energy of cured concrete G; »g can be estimated from the
stress-strain curve of uniaxial tensile tests. Due to the experimental difficulties involved in these
tests, the fracture energy can be estimated as following. For plain shotcrete, a value in the range
of 0.05kN/m - 0.15kN/m is recommended. However, the shotcrete can be reinforced using steel
fibres, in this case G; »g can be estimated with the correlation proposed by Barros & Figueiras

(1999):
Giog = (1 + 13.159Wf1'827) G1o (14-26)

where

Gto

The fracture energy of plain shotcrete
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We - fibre percentage in weight [kg/m°]

For plain concrete, the value is strictly dependent on the strength class and the maximum
aggregate size dqx (Table 14-2 (p. 157), CEB-FIP model code (1990)).

Table 14-2: Fracture energy G; »g for plain concrete

Gt 28 (N/m)
O max(mm
C12 c20 C30 Cc40 C50 C60 C70 Cc80
8 26.91 34.06 4218 49.67 56.71 63.39 69.78 75.93
16 32.30 40.87 50.61 59.61 68.05 76.07 83.73 91N
32 62.44 79.02 97.86 115.24 131.56 147.06 161.88 17615

14.4.1.7 | Ductility

If Time dependent behaviour is turned off then a single peak parameter €%, is available instead
of €Zp,1h ) Si’p,gh and €€p,24h and no-dependency of ductility in time is considered. If Time

dependent behaviour is turned on, then the user can define €€p,1h ) €Ic’p,8h and Eﬁp,m. Values in
the range of -0.03 to -0.01, -0.0015 to -0.001 and -0.0012 to -0.0007 are respectively suggested

D D p
fOr €cp1h > Ecpsh ANA €y oy,

14.4.1.8 | Creep

Creep properties of concrete can be derived from uniaxial multistage creep tests. Deriving
creep properties from such a test requires additional information about strength, stiffness and
ductility development with time. The user can follow the recommendation of Eurocode 2 for
cast concrete, instead values in the range of 2 - 3 for Per are suggested for shotcrete tunnel
linings. 5, is recommended in a range of 1d - 5d. If Creep behaviour is inactive, Per and tg
are disabled for editing and both set to O. If Creep behaviour is active, the parameters can be
defined.

14.4.1.9 | Shrinkage

Concrete shrinkage is strongly influenced by environmental conditions and water-cement-ratio,
such that low air humidity and high water-cement ratios amplify it. Due to less aggregate content

and higher water-cement ratio, shrinkage of shotcrete is more pronounced than for conventional

cast concrete (Austin & Robins, 1995). If Shrinkage behaviour is inactive, £5'" and it are

disabled. If Shrinkage behaviour is active, the user can set the parameters.

Eurocode 2 recommends final shrinkage strains, €5, for cast concrete of -0.0002 to -0.0006
depending on air humidity, concrete class and the effective size of the structural element. For

tunnel linings values in the range of -0.0015 to -0.0005 for £5"" and of 28d - 100d for tiA" are
suggested.

14.4.1.10 | Safety factors

To facilitate calculations based on design values of concrete strength, the Concrete model
implements the possibility to use separate safety factors yy. and yy for compressive and tensile
strength. In fact PLAXIS design approach is not advisable for these two parameters, because:
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* |n case the user defines the time-dependency of strength through the classes J1, J2 and J3,
the shotcrete strength values at 0.5h, 12h and 24h are not related to f »5. Using a lower value

of f. 2g therefore does not affect the shotcrete strength at early age, if the early strength
classes are used.

* |f lower concrete strength is used due to safety considerations, also the fracture energy
should be reduced to obtain similar stress-strain curves.

®* The creep factor increases for concrete utilisation >0.45 f.. Using design values for f. would
therefore overestimate creep effects.

For these reasons input safety factors yz. and y; have been introduced. The characteristic, time-
dependent compressive and tensile strengths f. and f; as well as the corresponding fracture
energies G and G, are divided by vy and yy in each calculation step, but concrete utilization
always refers to the characteristic values of f. and f;.

14.4.2 | Summary of recommended parameters for
Concrete model

Table 14-3 (p. 158) groups the Concrete model parameters as a function of the material
properties and the time dependency.

Table 14-3: Recommended parameters and values for the Concrete model

Parameter Recommended values Unit

1. Stiffness parameters (non-time dependent)
Ezg [25, 30] [GPal
v [0.15, 0.25] (-]

2. Strength parameters

Strength in compression

fc,28 Depending on strength class [kN/m? ]
feon [0.10, 0.25] [-]
fefn [01 [-]
feun [0.1] [-]
Ge 28 [30, 70] [KN/m]
Pmax [35, 43] [°]
v [0, 10] [°]
Ve Safety fagtor depending ]
on design standard
Strength in tension
fi 28 Depending on strength class [kN/mz]
fun [0] -
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Parameter Recommended values Unit
[0.05, 0.15] plain
Gt 28 shotcrete, [Table 14-2 [KN/m]
(p. 157)] cast concrete
Ve Safety fac':tor depending ]
on design standard
Ductility
e [-]
a [16, 20] [-]
3. Time dependent parameters
thyar [28] [day]
Stiffness
E1/Esg [0.5, 0.7] [-]
Strength
Jea oz 10.2,0.3] cast conrete 8
Ductility
ei’p’lh [-0.01, -0.03] [-]
5’C’p’8h [-0.001, -0.0015] [-1
Eﬁp,24h [-0.0007, -0.0012] [-]
a [16, 20] [-]
Shrinkage
[-0.0005, -0.0015] shotcrete
gshr tunnel lining, [-0.0002, [-]
-0.0006] cast concrete
tehr [28, 100] [day]
Creep
cor [2, 3] shotcrete tunnel lining, o
¢ [Eurocode 2] cast concrete [*]
5o [, 51 [day]

14.5 | State parameters in the Concrete model

In addition to the output of standard stress and strain, the Concrete model provides an output
on state variables such as the current elastic modulus E(t) and the current compressive yield
stress f.,. These parameters can be visualised by selecting the State parameters option from

the Stresses menu. An overview of available state parameters is given below:
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At Age of concrete day

E Average Young's modulus in current step [kN/mz]

f. :Lthr;iaxial compressive strength at the end of the current [kN/mZ]

p

fey Current compressive yield stress [kN/m?]
Hc Normalised compressive strain hardening parameter [-]
H; Normalised tensile strain hardening parameter [-]
UtilIFC Concrete utilisation factor in compression [-]
ULIIFT Concrete utilisation factor in tension [-]
e . E(t) Normalised creep history strain in xx direction (-]
Eqn E(t) Normalised creep history strain in yy direction [-]
€7 E(t) Normalised creep history strain in zz direction [-]
eqy- E(t) Normalised creep history strain in xy direction [-]
g E(t) Normalised creep history strain in yz direction [-]
e . E(t) Normalised creep history strain in xz direction [-]

Some parameters are further explained in the following two sections:

14.5.1/ Concrete utilisation factor in compression UtilFC
The concrete utilisation factor in compression UtilFC is defined as:

UtIFC = amt< 93 — 91

01 — Orot

) /(Vgefe) (H ardem'ng) (14-27)
)/ (Yfefey) (SOftening) (14-28)

The utilisation factor is constant in hardening and is related to the maximum uniaxial
compressive strength at the end of the current step f.. After the peak value is reached and the
softening is taking place, the utilisation factor is related to the current compressive yield stress
fey and follows the stress-strain curve in softening (Figure 14-2 (p. 148)).

UtlFC = amt<u
g

1 — Orot

14.5.2 | Concrete utilisation factor in tension UtilFT
The concrete utilisation factor in tension UtIFT is defined as:

ULlFT = — (Softening) (14-29)
tY ft

The utilisation factor is constant during the linear softening in tension and is related to the
maximum uniaxial tensile strength at the end of the current step f;. When the residual value is

reached, then f; = fin.

14 The Concrete model [ADV] | 160



14.6 | On the use of the Concrete model in
dynamics calculations

Generally the time steps and the time interval for the usual dynamics calculations are in the
range of seconds. However, the time scale in concrete hardening is in the range of hours

to days. For this reason, in dynamics analysis, the use of the Concrete model with time-
dependency of the parameters is not recommended unless the concrete elements are not
totally cured in the previous construction stages. Otherwise, in dynamics analysis the Time
dependent strength and stiffness , the Creep behaviour and the Shrinkage behaviour
should be disabled, nevertheless the Concrete model continues to take into account the stress-
strain hardening and softening.

14.7 ' Warning

The problems involving tension softening with low fracture energy could affect the convergence
of the FE-calculation, even though the model itself can never fail physically. The crack initiation
massively increases the global error, even though the step size is gradually reduced by the
global iteration procedure.

A structure made of strain softening material behaves in a brittle or ductile manner, not only
depending on the material behaviour formulated at stress point level, but also on the size of the
structure, with the response becoming ever more brittle the larger the structure is. This is due to
the increase of energy released by the unloading part of the structure compared to the fracture
energy dissipated in the crack. If the energy in unloading is larger than the fracture energy of the
crack, both forces and displacements need to decrease in order to reach equilibrium.

However, in tunnelling the shotcrete never involves failure with low fracture energy. The problem
could occur in other applications regarding rigid inclusions in the ground.
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The UBC3D-PLM model [ULT]

During an earthquake, the seismic waves propagate from the source till the ground surface,
causing ground shaking. The soil deposit acts as a filter causing the variation of the seismic
waves in terms of amplitude, duration and frequency content at any depth of the soil deposit.
The effects of an earthquake can be different, such as structural damages, landslides and soil
liquefaction.

The term liquefaction is used to describe a variety of phenomena that occurs in saturated
cohesionless soils under undrained conditions. Under static and cyclic loading, dry cohesionless
soils tend to densify. If these soils are saturated and the applied load acts in a short time, as in
the case of an earthquake, the tendency to densify causes an increase in excess pore pressures
that cannot rapidly be dissipated and consequently a decrease in the effective stresses occurs.
When this happens, the soil behaves as a fluid.

This phenomenon can be explained considering that the shear resistance t for cohesionless
soils is given by Coulomb's formula:

T = 0,, tan(p) (15-1)

where

Ovo The initial effective stress

¢ The friction angle.

According to Terzaghi's formula, the effective stress is given by:
Tho = Tvo — Pu (15-2)

where
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Ovo The total vertical stress.

Pw The pore pressure.
When the excess pore pressures A p,, develop during an earthquake, the equation can be
written as:

0'2;0 = Oyo — (pw + pr) (15-3)

which means that the effective stress state tends to decrease and, when it reaches zero, also
the shear resistance is null.

In order to evaluate the potential liquefaction hazard of a site, it is necessary to identify

the predisposing and triggering factors for liquefaction. The predisposing factors are the
characteristics of the soil deposit such as particle size and shape, gradation and plasticity
characteristics. The triggering factors depend on the earthquake magnitude, duration and
peak ground acceleration. To establish if liquefaction can occur in a specific site subjected to a
selected earthquake semi-empirical procedures or nonlinear dynamic analyses can be used.

The UBC3D-PLM model ? is an effective stress elasto-plastic model which is capable of
simulating the liquefaction behaviour of sands and silty sands under seismic loading (Tsegaye
(2010), Petalas & Galavi (2012)). The UBC3D-PLM model formulation is based on the original
UBCSAND (University of British Columbia Sand) model introduced by Puebla, Byrne & Phillips
(1997) and Beaty & Byrne (1988). The original UBCSAND is a 2D model formulated in the
classical plasticity theory with a hyperbolic strain hardening rule, based on the original Duncan-
Chang model. The hardening rule relates the mobilised friction angle to the plastic shear strain
at a given stress. The UBCSAND model contains a 2D Mohr-Coulomb yield surface and a
corresponding non-associated plastic potential function. The flow rule in the model is based on
the stress-dilatancy theory developed by (Rowe (1962)), linearised and simplified according to
energy considerations.

The main difference between the UBCSAND model and the UBC3D-PLM model is the
generalized 3D formulation of the latter. The UBC3D-PLM model uses the Mohr-Coulomb yield
condition in a 3D principal stress space for primary loading, and a yield surface with a simplified
kinematic hardening rule for secondary loading. Moreover, a modified non-associated plastic
potential function based on Drucker-Prager's criterion is used for the primary yield surface, in
order to maintain the assumption of stress-strain coaxiality in the deviatoric plane for a stress
path beginning from the isotropic line Tsegaye (2010).

The assessment of the liquefaction potential of a soil deposit can be done by performing a
dynamic site response analysis. Generally the following steps are needed to perform such an
analysis (Laera & Brinkgreve, 2015):

* Definition of the geotechnical model of the soil deposit, in terms of soil layer distribution,
water table depth, appropriate dynamic boundary conditions and soil mechanical properties
to describe its behaviour under static and cyclic loading.

* Definition of the seismic input motion, according to the specific site and the probabilistic
study as reported in the current regulations (i.e. Eurocode 8, NTC 2008, etc.).

* Definition of the numerical model to perform the analysis including the appropriate dynamic
boundary conditions.

A site response analysis requires a deep and extended investigation of the soil deposit to
identify the soil layer distribution and hydraulic conditions as well as the mechanical properties
of the soil. When possible, the investigation should be extended until the depth of a rock or rock-
like formation. In situ and laboratory tests should be performed to evaluate index properties,
stiffness and strength of the soil layers with regard to their behaviour under cyclic loading
(Cross-hole and Down-hole in situ tests, among others, and cyclic triaxial, cyclic direct simple

2 PLM = PLAXIS Liquefaction Model

15 The UBC3D-PLM model [ULT] | 163



shear and resonant column laboratory tests). However, in many cases only data from drained
triaxial tests (CD TxC) or in situ tests like SPT or CPT are available. For this reason the UBC3D-
PLM model implements a specific formulation with input parameters based on these tests.

Main characteristics of the UBC3D-PLM model and the corresponding input parameters are
given below:

. . * *
® Stress dependent stiffness according to a power law k¢, kg, me, Ne, Tp,

®* Plastic straining due to primary deviatoric loading kZ{’.

* Densification due to the number of cycles during secondary loading fgens-
* Post-liquefaction stiffness degradation fgpost
* Failure according to the Mohr-Coulomb failure criterion ¢, ¢, and c.

15.1! Elasto-plastic behaviour and hardening
rule

The UBC3D-PLM model incorporates a non-linear, isotropic law for the elastic behaviour that
is defined in terms of the elastic bulk modulus K and the elastic shear modulus G, which are
defined by the following equations:

N pl mMe
K=k Bepref( ) (15-4)
Dref
* pl MNe
G = kGepref( ) (15_5)
Dref
where
ks = Bulk modulus factor.
kg = Shear modulus factor.
Pref = Reference pressure
Me = power for stress dependency of the bulk modulus K
Ne =

power for stress dependency of the shear modulus G

Pure elastic behaviour with G,y is predicted by the model during the unloading process. Once

the stress state reaches the yield surface, plastic behaviour is taken into account as long as the
stress point is not going immediately back into the elastic zone.

©® Note: The implicit Poisson's ratio calculated from elastic bulk and shear modulus from
Egn. 15-4 (p. 164) and Egn. 15-5 (p. 164) is suitable for dynamics calculation, but
using it for gravity loading may give improper initial stress state. Therefore, the user is
advised to use another material for the stress initialization.

The first yield surface is defined from a set of Mohr-Coulomb functions. The position and size
of the yield surface is defined based on the hardening law. More specifically, plastic hardening
based on the principle of strain hardening is used in the model (similar to the Hardening Soil
model). The hardening rule governs the amount of plastic strain as a result of mobilisation of
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the shear strength (sin @,0p). The mobilised friction angle derived from the Mohr-Coulomb yield
criterion, is given as:
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Figure 15-1: The original UBCSAND hardening rule

The hyperbolic hardening rule (Beaty & Byrne, 1988) is presented schematically in Figure
15-1 (p. 165). It relates the increment of the sine of the mobilised friction angle (calculated
according to Eqgn. 15-6 (p. 165) ) to the plastic shear strain increment as follows (Puebla
Byrne & Phillips, 1997):

dy, = (%)dSin(Somob) (15-7)
/ ny . 2

G =[P > <1 _ (M)R > 15-8

:(5 sn (o) )T (15-8)

where k*Gp is the plastic shear modulus factor; "» is the plastic shear modulus exponent; ©mop

is the mobilised friction angle, which is defined by the stress ratio; ¢, is the peak friction angle;
and Ry is the failure ratio ny / nyy, ranging from 0.5 to 1.0, where ny is the stress ratio at failure and
Nui is the asymptotic stress ratio from the best fit hyperbola. The hardening rule as reformulated
by Tsegaye (2010) in UBC3D-PLM model is given as:

. * ! e Dref sin ((Pmob) 2
dsin () = 1.5k p( P ) —(1—- | —— R d\ (15-9)
(#mor) “\prs) P sin(p,) )

where dA is the plastic strain increment multiplier.

15.2  Flow rule

The plastic potential function specifies the direction of the plastic strain. A non-associated flow
rule based on the Drucker-Prager plastic potential function is used in the UBC3D-PLM model
(Tsegaye, 2010). The plastic potential function g is formulated as:
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g=q— M(p' + ccot (p,)) (15-10)
6 sin
_ : (Yr) (15-11)
3 —sin (Y1)
where the Drucker-Prager surface is fixed in the compression point.
In the UBC3D-PLM model the flow rule of the original UBCSAND model is used, which is derived
from energy considerations by Puebla, Byrne & Phillips (1997). Similar to the Hardening Soil
model it is based on three observations (Figure 15-2 (p. 166)):
* There is a unique stress ratio, defined by the constant volume friction angle ¢.,, for which
plastic shear strains do not cause plastic volumetric strains.
® Stress ratios which lie below sin ¢, exhibit contractive behaviour, while stress ratios above
sin @, lead to a dilative response. This means that the constant volume friction angle works

as the phase transformation angle.
* The amount of contraction or dilatancy depends on the difference between the current stress
ratio and the stress ratio at sin ¢@,.

The increment of plastic volumetric strain deb is calculated as follows:

de? = sin(¢,)dy? (15-12)
sin (¢y,) = sin (¢,,) — sin (@) (15-13)

where, @, is the constant volume friction angle.

Sinwmob(max) Sin(ppeak

Dilative area

Contractive area

Sine of the Mobilised Dilatancy angle (°)

-Sinl.]Jmob(max)
Sine of the Mobilised Friction angle (°)

Figure 15-2: Graphical representation of the modified
Rowe's flow rule as used in UBC3D-PLM model

Based on the mobilised friction angle an unloading-reloading criterion is defined in the model as
follows:
sin (¢5,,;) < sin ((p?nob) (unloading; elastic behaviour) (15-14)
sin (¢5,,;) > sin (go?nob) (Loading or reloading; plastic beham'our) (15-15)

The previous mobilised friction angle sin(¢? ) is memorised from the previous calculation

step, while the current one sin(goﬁwb) is calculated based on the current stresses. During
loading, the friction angle is mobilised, and hardening plasticity occurs. During unloading, pure
elastic behaviour is predicted until the stress point reaches the p’ axis.

15 The UBC3D-PLM model [ULT] | 166



15.3 | Load state during liquefaction

The UBC3D-PLM model employs two yield surfaces to guarantee a smooth transition into the
liquefied state of the soil and to enable the distinction between primary and secondary loading

(Figure 15-3 (p. 167)). The UBC3D-PLM model incorporates a densification law through a
secondary yield surface with a kinematic hardening rule that improves the precision of the
evolution of the excess pore pressure. This surface generates lower plastic deformations
compared to the primary yield surface.
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Figure 15-3: Introduction of two yield surfaces in order to include soil
densification, smooth transition in liquefaction and post-liquefaction behaviour

The plastic shear modulus factor kg’ during primary loading is identical with the one entered as
input parameter by the user and is used in the hardening rule governing the hardening of the
primary yield surface. The plastic shear modulus factor ké” during the secondary loading is a

function of the number of cycles followed during the loading process. A simple rule based on
stress reversals of loading to unloading and vice versa is used to define the counting of cycles.
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This leads to an increase of the excess pore pressure during undrained cyclic loading with a
decreasing rate until the liquefied state is approached. The modification of the plastic shear
modulus factor during the secondary loading is calculated as follows:

K socondary = & (44 5 ) hard fense (15-16)
where

k*Gp = Input plastic shear modulus factor.

kg’:second;y Secondary plastic shear modulus factor.

Nyey = Number of shear stress reversals from loading to unloading or vice versa.

hard = Factor which is correcting the densification rule for loose soils.

Jdens = Multiplier which is a user input parameter to adjust the densification rule.

For loose sands, characterised by a value of (N4)go (i.€. normalised penetration resistance for

SPT procedures) between 5 and 9, the densification rule is modified Beaty & Byrne (2011),
Naesgaard (2011). The correction rule is as follows:

hard = min(1; max(0.5;0.1(N1)g,) (15-17)

© Note: The normalised penetration resistance (N;)go from SPT tests is an input
parameter used to define only the hard factor. However, the user can correlate the
other input parameters of the UBC3D-PLM model using (N;)go (15.5 Parameters of the
UBC3D-PLM model (p. 169)).

The plastic shear modulus is limited according to the maximum normalised SPT value
(max(N7)go) corresponding to dense soils.

G,max —

* % 2
KD <k ((Nl)ﬁo,maz) +0.003 + 100 (15-18)

This rule is the result of calibrating a number of direct simple shear tests. Thus, the calibration
factor plays a key role when the user wants to model different stress paths (i.e. cyclic triaxial
tests, etc.) and the final value is a matter of judgement according to the most critical stress

path for a specific problem. It finally leads to an increase of the excess pore pressure during
undrained cyclic loading until the liquefied state is approached. The rate of generation of excess
pore pressure decreases by increasing number of cycles.

15.4 | Post-liquefaction rule and cyclic
mobility

An important issue during the modelling of cyclic liquefaction in sands is the volumetric locking.
The evolution of the plastic volumetric strains, after the stress path reaches the yield surface
defined by the peak friction angle, becomes constant due to the formulation of the flow rule (in
Eqn. 15-12 (p. 166) ). In the case sin @mep becomes sin ¢, and remains constant meaning that
sin Y, is also constant.

15.4 Post-liquefaction rule and cyclic mobility | 168



Consequently the stiffness degradation of loose non-cohesive soils due to the post liquefaction
behaviour as well as dense non-cohesive soils due to the cyclic mobility cannot be modelled.
This limitation is overcome in the formulation of the UBC3D-PLM model with the equation which
gradually decreases the plastic shear modulus as a function of the generated plastic deviatoric
strain during dilation, due to the deconstruction of the soil skeleton which occurs during dilative
behaviour. This leads to the decreased soil stiffness during the contraction phase which follows
after the unloading phase. This behaviour is presented in Figure 15-4 (p. 169) picturing

the process of cyclic mobility of a dense sand. The aforementioned stiffness degradation is
computed as follows:

k*Gp,post—liquefaction = k*GpEdil (15—19)
Eaq = max (e "% froq) (15-20)

where kP ¢ is the input plastic shear modulus factor, k*pG,post_,,-quefact,-on is the plastic shear
modulus factor during liquefaction, g4; is the accumulation of the plastic deviatoric strain which
is generated during dilation of the soil element. The minimum value of E; term in the above
mentioned equation is limited by the input parameter fgyost.
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Figure 15-4: Undrained cyclic shear stress path reproduced with
UBC3D-PLM model for a dense sand. Cyclic mobility, stiffness
degradation and soil densification are indicated on the graph

15.5 | Parameters of the UBC3D-PLM model

Usually, in earthquake engineering, when the onset of liquefaction is the modelling target, a
cyclic triaxial or a cyclic direct simple shear test is the proper way to extract all the parameters
for the UBC3D-PLM model. However, in many cases only data from drained triaxial tests (CD
TxC) or in situ tests (SPT) are available. For this reason the UBC3D-PLM model implements

a specific formulation with input parameters based on these tests. However, some of the
equations based on SPT values proposed by Beaty & Byrne (2011) for the generic calibration
of the UBCSAND model should be used with careful consideration for the calibration of the
UBC3D-PLM model.

The parameters with their standard units are listed below.
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Stiffness parameters:

ks Elastic bulk modulus factor [-]
kZ? Elastic shear modulus factor [-]
kZ{’ Plastic shear modulus factor [-]
Me Rate of stress-dependency of elastic bulk modulus [-]
Toe Rate of stress-dependency of elastic bulk modulus [-]
np Rate of stress-dependency of plastic shear modulus [-]
Pref Reference pressure [kN/m?]

Strength parameters:

Pcy Constant volume friction angle [°]
bp Peak friction angle [°]
c Cohesion [kN/m?]
Ot Tension cut-off and tensile strength [kN/m?]
Field data
(N1)eo Normalised SPT value [-]
Advanced parameters:
R¢ Failure ratio [-]
fdens Densification factor -]
fepost Post-liquefaction factor [-]

The UBC3D-PLM model allows two drainage types: Drained and Undrained A. The other
undrained calculations are not available due to the effective stress nature of the model.
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Soil - UBC3D-PLM - <NoMame>

J e O
Genersl Mechanical Groundwater Thermal Interfaces  Initial
Property Unit Value
Stiffness
k¥ge 0.000
kK ge 0.000
k*gP 0.000
Stress-dependency
m, 0,000
N, 0.000
g 0.000
P ref kMfm? 100.0
Strength
Shear
c kMm2 0.000
Pey ‘ 0.000
Py = 0,000
Tension
T, knfm?2 0.000
Field data
Mydeg 0,000
Advanced
Use defaults
Stiffness
Fiens 1.000
fEpost 1.000
Strength
R: 0.9000
Mext QK Cancel

Figure 15-5: Parameters of the UBC3D-PLM model

15.5.1/Stiffness modulus factors k5, k5 & kG” and indexes ™e, "e and "»

Beaty & Byrne (2011) proposed a set of equations based on the normalised Ngpr value, (N¢)go for
the initial generic calibration of the UBCSAND 904aR model. Makra (2013) revised the proposed
equations and highlighted the differences between the original UBCSAND 2D formulation and
the UBC3D-PLM model, as implemented in PLAXIS. The proposed equations for the generic
initial calibration are the following:

kg = 21.7 x 20 x (Np)g%% (15-21)
kg =0.7 x k¢ (15-22)
kP = kg x (N1)Z, x 0.003 + 100 (15-23)

The index parameters Me¢, e and ™p should be calibrated by curve fitting. The range of these
values is 0-1. The suggested default values are m.-n. = 0.5 and n, = 0.4, Alternatively the

15 The UBC3D-PLM model [ULT] | 171



relative density correlations can be used to calibrate the above mentioned parameters as
suggested by Souliotis & Gerolymos (2016).

O Note: The implicit Poisson's ratio that is defined based on k};‘"’ and k:f is suitable
for dynamics calculation, but it does not generate a proper initial stress state if the
initial stress condition is established by gravity loading procedure. In such a case the
user should define another material set for the stress initialization step with proper
characteristics.

15.5.21 Strength parameters ¢, ¢, and c

The strength parameters of the primary yield surface @, ¢, and ¢ can be derived directly from

CD TxC or DSS tests. The default value for the cohesion c is 0, as in most cases for granular
soils without relevant fine component. The peak friction angle ¢, can be calculated from SPT

test as:

N N —15
Pp = Pev T ( 1)60 + max (07 %> (15-24)

10 5

The constant volume friction angle ¢, can be derived directly from SPT test using one of the
correlations available in literature (Bolton, 1986; Mayne, 2001).

© Note: Inthe UBC3D-PLM model, the constant volume friction angle ¢., plays the role of
the phase transformation angle @p;.

15.5.3 | Advanced parameters Ry, fgens and fepost

The densification factor f4ens is @ multiplier that controls the scaling of the plastic shear modulus
factor during secondary loading. The acceptable range is O - 1, when a value below 1 means that
kg’ becomes lower and the behaviour is softer. It is recommended to use fyens = 1.0 (Petalas &
Galavi, 2012)because the variation of the densification does not significantly affect liquefaction
triggering.

fepost is the parameter to adjust post-liquefaction behaviour. The acceptable range of fgyos: is 0.1

- 1and a value of 0.2 - 1is recommended. Resistance is underestimated for very dense sands,
which can be counterbalanced by an increase of the fg,,s: parameter.

The failure ratio Ry has a default value of 0.9, but it can be also estimated from the SPT test
based on the original UBCSAND (Beaty & Byrne, 2011):

Ry~ 1.1((N1)g) " < 0.99 (15-25)

15.5.4 | Normalised SPT value (N1)g0

The SPT blow count Ngpr is affected by a number of procedural details such as rod lengths,

hammer energy, sampler details and borehole size which are accounted using correction
factors. In addition, if the Ngpt is corrected by the overburden stress effects one obtains the

normlised penetration resistance (N4)gg, expressed as:

(N1)go = CnCrCrCBCsNgpr (15-26)
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where

Cn = overburden correction factor.

Cg = ER/60.

ERn = Measured value of the delivered energy as a percentage (%) of the theoretical
free-fall hammer energy.

Cr = Correction factor to account for different rod lengths.

Cp = Correction factor for nonstandard borehole diameters.

Cs = Correction factor that depends on the sampler.

Ngpr = Calculated as N, + N3 considering that N, N, and N3 are the number of blows

needed for the tube to penetrate each 15 cm.
The suggested values for Cg, Cr and Cs are given in Table 15-1 (p. 173).

Table 15-1: List of values of the different coefficient for the correction of the SPT test

Coefficient Condition Value
General
(Standard) 100
Borehole diameter, Cg 150 mm 105
200 mm 115
3+4m 0.75
4:6m 0.85
Rod length, Cr 6+10 m 0.95
10+30 m 1.00
>30m 1.00
Type of sampler, Cs Standard 1.00
Non standard 11+1.3

If (N7)g0 is not known, the following approximation (adapted from Beaty & Byrne (2011) ) with
relative density RD (expressed in %) can be used:

RD?
(Nl)ﬁ() ~ 152

(15-27)
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15.6 | State parameters in the UBC3D-PLM
model

In addition to the output of standard stress and strain, the UBC3D-PLM model provides output
of state variables, such as the excess pore pressure ratio in terms of vertical effective stresses
ry,o'v and the mobilised peak friction angle @, reqcheq- These parameters can be visualised by
selecting the State parameters option from the Stresses menu. An overview of available state
parameters is given below:

Sine of the mobilised friction angle (Eqn. 15-6 (p.

Sin ®mob,max Sine of the maximum mobilised friction angle [-]
® Flag indicating whether peak friction angle has been [-]
p,reached reached (0/1)
Nrev Number of half cycles [-]
o Excess pore pressure ratio in terms of vertical effective [-]
uov stress ( Eqn. 15-28 (p. 174) )

Maximum excess pore pressure ratio in terms of vertical

I 5 i -
4, gv,max effective stress -]
-~ Excess pore pressure ratio in terms of mean effective [-]
P stress ( Eqn. 15-29 (p. 174) )
r Maximum excess pore pressure ratio in terms of mean
u,p' ,;max . [']
effective stresses
E dil total Accumulated dilative plastic deviatoric strain [-]

ryo'vi TwP', @p reached are further explained in the following subsections:

15.6.1/ Excess pore pressure ratio in terms of vertical effective stresses r, ',

The liquefaction potential in terms of vertical effective stress can be expressed by means of the

excess pore pressure ratio r, 4 given by:
A 0';,
Tu,olv = -5 = 1- 7 (15—28)
JUO UUO

where ¢’ is the current vertical effective stress during the dynamics calculation and o' ¢ is
the initial effective vertical stress prior to the seismic motion. When r, 4, is equal to 1, the
corresponding layer is in a complete liquefied state. Consider zones with a maximum ry 5,
greater than 0.7 to be liquefied.

15.6.2 [Excess pore pressure ratio in terms of mean effective stress "vr

The state variable r, ,» gives similar information as "«p’ but instead of the vertical effective
stress the mean effective stress is used:
/ ! !
by—DP
Tup = 0 , —1— p_/ (15—29)
py py
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where p'is the current mean effective stress during the dynamics calculation and p' is the initial

mean effective stress prior to the seismic motion. When T’ equals 1, the soil is in a liquified
state.

15.6.3 | Reached peak friction angle @y, reached

The reached peak friction angle @, reacheq is a flag indicating if ¢, has been reached (0 = no, 1=
yes).

15.7 | On the use of the UBC3D-PLM model in
dynamics calculations

When subjected to dynamic or cyclic loading, the UBC3D-PLM model generates plastic strains
when mobilising the soil's material strength (shear hardening). A Rayleigh damping can be
defined to simulate the initial soil's damping characteristics.

The UBC3D-PLM model has been developed for simulating the dynamic behaviour of non-
cohesive soils and it is particularly suitable for analysing the problems involving generation of
pore pressure in undrained behaviour and liquefaction. For the same reason, it is less suitable
for use in static analysis. This limitation can be overcome by using Hardening Soil model(6 The
Hardening Soil model (Isotropic hardening) (p. 65))or Hardening Soil model with small-strain
stiffness(7 The Hardening Soil model with small-strain stiffness (HSsmall) (p. 80)) instead.

The UBC3D-PLM model develops overdamping due to use of G4 in elastic unloading. In the
problems not involving generation of pore pressure in undrained behaviour, liquefaction or
softening due to dilatancy, this limitation can be overcome by using the Hardening Soil model
with small-strain stiffness (7 The Hardening Soil model with small-strain stiffness (HSsmall) (p.
80)) instead.
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User-defined soil models [ADV]/[ULT]

+ [GSE]

16.1 Introduction

PLAXIS has a facility for User-defined Soil Models (UDSM). This facility allows users to
implement a wide range of constitutive soil models (stress-strain-time relationship) in PLAXIS.
Such models must be programmed in FORTRAN (or another programming language), then
compiled as a Dynamic Link Library (DLL) and then added to the UDSM sub-folder of the PLAXIS

program directory.

In principle the user provides information about the current stresses and state variables and
PLAXIS provides information about the previous ones and also the strain and time increments.
In the material data base of the PLAXIS input program, the required model parameters can be
entered in the material data sets.

Setting Description

o '+ At kt*At [Current stresses and state variables.

o.' K Previous stresses and state variables.
by

Agj, At Strain and time increments.
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© Note:

e Please note that the PLAXIS organization cannot be held responsible for any
malfunctioning or wrong results due to the implementation and/or use of user-
defined soil models.

e For a detailed view of the UDSMs offered in PLAXIS please check Bentley
Communities website.

16.2  Implementation of User Defined (UD)
soil Models in calculations program

16.2.1/ Main Functionalities UD Models

The PLAXIS calculations program has been designed to allow for UDSM. There are mainly six
tasks (functionalities) to be performed in the calculations program:

* |nitialization of state variables

® Calculation of constitutive stresses (stresses computed from the material model at certain
step)

® Return of the state variables

® Return of attributes matrix

® Creation of effective material stiffness matrix

® Creation of elastic material stiffness matrix

These main tasks (and other tasks) have to be defined by the user in a subroutine called
'User_Mod'. In this subroutine more than one user-defined soil model can be defined. If a UD
soil model is used in an application, the calculation program calls the corresponding task from
the subroutine User_Mod. To create a UD soil model, the User_Mod subroutine must have the
following structure:

Subroutine List of arguments
Name
Usexr_mod (IDTask, iMod, IsUndr, iStep, iTer, Iel,Int, X, Y, Z,

Time@, dTime, Props, Sig@, Swp@, StVar@, deEps, D, Bulk_W,
Sig, Swp, StVar, ipl, nStat, NonSym, iStrsDep, iTimeDep,
iTang, iPrjDir, iPrjlLen, iAbort)

IDTask = Identification of the task (1 = Initialise state variables; 2 = Calculate constitutive
stresses; 3 = Create effective material stiffness matrix; 4 = Return the number
of state variables; 5 = Return matrix attributes (NonSym, iStrsDep, iTimeDep,
iTang); 6 = Create elastic material stiffness matrix).

iMod = User-defined soil model number (This option allows for more than one UD
model, up to 10).

IsUndr = Drained condition (IsUndr = 0) or undrained condition (IsUndr = 1). In the latter

case, PLAXIS will add a large bulk stiffness for water.
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iStep Current calculation step number

iter = Current iteration number

Iel = Current element number

Int = Current local stress point number (1..3 for 6-noded elements, or 1..12 for 15-
noded elements)

XYz = Global coordinates of current stress point

Timeo = Time at the start of the current step

dTime = Time increment of current step

Props = Array(1..50) with User-defined model parameters for the current stress point

Sigo = Array(1..20) with previous (= at the start of the current step) effective stress
components of the current stress point and some other variables (a'o Xxr o" yyi
o" 271 o" Xy1 o yzi a" 2x1 Psteady: ZMstageO , 2Mstage, Sat, Sat’ , Suc, Suc?
, ZMst , 2Msf, SatEff, SatRes, Temp, TempO0). Where: SatEff is the effective
saturation. TempO is the temperature at the beginning of the current step and
Temp is the updated temperature during the step calculation. In 2D calculations
0y, and o0,y should be zero.

Swpo = Previous excess pore pressure of the current stress point}

StVaro = Array(1..nStat) with previous values of state variables of the current stress
point

dEps = Array(1..12) with strain increments of the current stress point in the current step

0 0 0 0 0 0

(Agyy, Agyy, Aeyz, AYyy, AVyz, AVzxi Exx 1 Eyy 1 €22 Vxy 1+ Vyz 1 Vax ).In2D
calculations Ay, Ayzy, Vyz % and Vazx % should be zero. In PLAXIS 2D this array
may also contain non-local strains. Contact PLAXIS for more details.

D = Effective material stiffness matrix of the current stress point (1..6, 1..6)

Bulk_W= Bulk modulus of water for the current stress point (for undrained calculations
and consolidation)

Sig = Array (1..6) with resulting constitutive stresses of the current stress point (0'yy,
O'yys 0'220 O'xy, O'yz, O'2x)

Swp = Resulting excess pore pressure of the current stress point

Stvar = Array(1..nStat) with resulting values of state variables for the current stress
point

ipl = Plasticity indicator: 0 = no plasticity, 1 = Mohr-Coulomb (failure) point; 2 =
Tension cut-off point, 3 = Cap hardening point, 4 = Cap friction point, 5 =
Friction hardening point, 6 = Plotting liquefaction indicators.

nStat =

Number of state variables (unlimited)

16 User-defined soil models [ADV] / [ULT] + [GSE] | 178



NonSym= Parameter indicating whether the material stiffness matrix is non-symmetric
(NonSym = 1) or not (NonSym = 0) (required for matrix storage and solution).

iStrsDep= Parameter indicating whether the material stiffness matrix is stress-dependent
(iStrsDep = 1) or not (iStrsDep = 0).

iTimeDep Parameter indicating whether the material stiffness matrix is time-dependent
(iTimeDep = 1) or not (iTimeDep = 0).

iTang = Parameter indicating whether the material stiffness matrix is a tangent stiffness
matrix, to be used in a full Newton-Raphson iteration process (iTang = 1) or not
(iTang = 0).

iPrjDir = Project directory (for debugging purposes)

iPrjLen = Length of project directory name (for debugging purposes)

iAbort =

Parameter forcing the calculation to stop (iAbort = 1).

In the above, 'increment' means 'the total contribution within the current step' and not per
iteration. 'Previous' means 'at the start of the current step', which is equal to the value at the end
of the previous step.

In the terminology of the above parameters it is assumed that the standard type of parameters
is used, i.e. parameters beginning with the characters A-H and O-Z are double (8-byte) floating
point values and the remaining parameters are 4-byte integer values.

The parameters IDTask to dEps and iPrjDir and iPrjLen are input parameters; The values of
these parameters are provided by PLAXIS and can be used within the subroutine. These input
parameters should not be modified (except for StVar® in case IDTask= 1). The parameters D to
iTang and iAbort are output parameters. The values of these parameters are to be determined
by the user. In case IDTask =1, StVar® becomes output parameter.

The user subroutine should contain program code for listing the tasks and output parameters
IDTask= 1to 6). After the declaration of variables, the User_Mod subroutine must have the
following structure (here specified in pseudo code):

Case IDTask of

1 Begin
{ Initialise state Variable StVar }
End
2 Begin
{ Calculate constitutive stresses Sig (and Swp) }
End
3 Begin
{ Create effective material stiffness matrix D }
End
4 Begin
{ Return the number of state variables nStat }
End
5 Begin
{ Return matrix attributes NonSym, iStrsDep, iTimeDep }
End
6 Begin
{ Create elastic material stiffness matrix De }
End
End Case
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If more than one UD model is considered, distinction should be made between different models,
indicated by the UD model number iMod.

16.21.1! Initialise state variables (IDTask = 1)

State variables (also called the hardening parameters) are, for example, used in hardening
models to indicate the current position of the yield loci. The update of state variables is
considered in the calculation of constitutive stresses based on the previous value of the state
variables and the new stress state. Hence, it is necessary to know about the initial value of

the state variables, i.e. the value at the beginning of the calculation step. Within a continuous
calculation phase, state variables are automatically transferred from one calculation step to
another. The resulting value of the state variable in the previous step, StVar, is stored in the
output files and automatically used as the initial value in the current step, StVarO. When starting
a new calculation phase, the initial value of the state variables is read from the output file of the
previous calculation step and put in the StVarO array. In this case it is not necessary to modify
the StVarO array.

However, if the previous calculation step does not contain information on the state variables

(for example in the very first calculation step), the StVarO array would contain zeros. For this
case the initial value has to be calculated based on the actual conditions (actual stress state) at
the beginning of the step. Consider, for example, the situation where the first state variable is
the minimum mean effective stress, p' (considering that compression is negative). If the initial
stresses have been generated using the Ky-procedure, then the initial effective stresses are
non-zero, but the initial value of the state variable is zero, because the initialization of this user-
defined variable is not considered in the Kp-procedure. In this case, part 1 of the user subroutine

may look like:

1 Begin

{ Initialise stage variables StVar()}
p = (SIgo[1l] + Sig@[2] + Sig@[3]) /3.0
StVar@[1l] = Min(StVar@[1], p)
End

16.2.1.2 | Calculate constitutive stresses (IDTask = 2)

This task constitutes the main part of the user subroutine in which the stress integration and
correction are performed according to the user-defined soil model formulation. Let us consider a
simple example using a linear elastic D-matrix as created under IDTask = 3.

In this case the stress components, Sig, can directly be calculated from the initial stresses,
Sig0, the material stiffness matrix, D, and the strain increments, dEps: Sig[i]= SigO[i] + Z(Dli,
j1*dEpslj]). In this case, part 2 of the user subroutine may look like:

2 Begin
{ Calculate constitutive stresses Sig (and Swp) }
For i=1 to 6 do
Sig[i] = Sig@[i]
For j=1 to 6 do
Sig[i] = Sig[i] + D[i,jl1*dEps[j]

End for{j}
End for {i}
End
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16.2.1.3 | Create effective material stiffness matrix (IDTask
= 3)

The material stiffness matrix, D, may be a matrix containing only the elastic components of the
stress-strain relationship (as it is the case for the existing soil models in PLAXIS), or the full
elastoplastic material stiffness matrix (tangent stiffness matrix). Let us consider the very simple
example of Hooke's law of isotropic linear elasticity. There are only two model parameters
involved: Young's modulus, E, and Poisson's ratio, v. These parameters are stored, respectively,
in position 1and 2 of the model parameters array, Props(1..50). In this case, part 3 of the user
subroutine may look like:

3 Begin
{ Calculate effective material stiffness matrix D }
E = Props[1]
v = Props|[2]
G = 0.5%E/(1.0+v)
Fac = 2*G/(1.0-2*v){ make sure that v<@.5!!}
Terml = Fac*(1-v)
Term2 = Fac*v
D[1,1] = Terml
D[1,2] = Term2
D[1,3] = Term2
D[2,1] = Term2
D[2,2] = Terml
D[2,3] = Term2
D[3,1] = Term2
D[3,2] = Term2
D[3,3] = Terml
D[4,4] = G
D[5,5] = G
D[6,6] = G

End

(By default, D will be initialised to zero, so the remaining terms are still zero; however, it is a good
habit to explicitly define zero terms as well.)

If undrained behaviour is considered (IsUndr = 1), then a bulk stiffness for water (Bulk_W)
must be specified at the end of part 3. After calling the user subroutine with IDTask = 3 and
IsUndr = 1, PLAXIS will automatically add the stiffness of the water to the material stiffness
matrix D such that: D[i=1..3, j=1..3] = D[i, j]+ Bulk_W. If Bulk_W is not specified, PLAXIS will give it
a default value of 100*Avg(D[i=1..3, j=1..3]).

16.2.1.4 | Return the number of state variables (IDTask =
4)

This part of the user subroutine returns the parameter nStat, i.e. the number of state variables.
In the case of just a single state parameter, the user subroutine should look like:

4 Begin
{ Return the number of state variables nStat }
nStat = 1
End
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16.2.1.5 | Return matrix attributes (IDTask = 5)

The material stiffness matrix may be stress-dependent (such as in the Hardening Soil model) or
time-dependent (such as in the Soft Soil Creep model). When using a tangent stiffness matrix,
the matrix may even be non-symmetric, for example in the case of non-associated plasticity.
The last part of the user subroutine is used to initialize the matrix attributes in order to update
and store the global stiffness matrix properly during the calculation process. For the simple
example of Hooke's law, as described earlier, the matrix is symmetric and neither stress- nor
time-dependent. In this case the user subroutine may be written as:

5 Begin
{ Return the matrix attributes NonSym, IStrsDep, }
{ iTimeDep, iTang }
NonSym = @
iStrsDep
iTimeDep
iTang = 0
End

0
0

For NonSym = 0 only half of the global stiffness matrix is stored using a profile structure,
whereas for Nonsym = 1the full matrix profile is stored.

For iStrsDep =1the global stiffness matrix is created and decomposed at the beginning of
each calculation step based on the actual stress state (modified Newton-Raphson procedure).

For iTimeDep = 1the global stiffness matrix is created and decomposed every time when the
time step changes.

For iTang = 1the global stiffness matrix is created and decomposed at the beginning of each
iteration based on the actual stress state (full Newton-Raphson procedure; to be used in
combination with 1StrsDep=1).

16.2.1.6 | Create elastic material stiffness matrix (IDTask =
6)

The elastic material stiffness matrix, D¢, is the elastic part of the effective material stiffness
matrix as described earlier.

In the case that the effective material stiffness matrix was taken to be the elastic stiffness matrix,
this matrix may just be adopted here. However in the case that an elastoplastic or tangent

matrix was used for the effective stiffness matrix, then the matrix to be created here should only
contain the elastic components.

The reason that an elastic material stiffness matrix is required is because PLAXIS calculates the
current relative global stiffness of the finite element model as a whole (CSP = Current Stiffness
Parameter). The CSP parameter is defined as:
Total work
CSP = 16-1
Total elastic work ( )

The elastic material stiffness matrix is required to calculate the total elastic work in the definition
of the CSP. The CSP equals unity if all the material is elastic whereas it gradually reduces to zero
when failure is approached.

The CSP parameter is used in the calculation of the global error. The global error is defined as:

|lunbalance force]

Global error = (16-2)

|currently activated load| + CSP. |previously activated load|
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The unbalance force is the difference between the external forces and the internal reactions.
The currently activated load is the load that is being activated in the current calculation phase,
whereas the previously activated load is the load that has been activated in previous calculation
phases and that is still active in the current phase.

Using the above definition for the global error in combination with a fixed tolerated error results
in an improved equilibrium situation when plasticity increases or failure is approached. The idea
is that a small out-of-balance is not a problem when a situation is mostly elastic, but in order

to accurately calculate failure state, safety factor or bearing capacity, a stricter equilibrium
condition must be adopted.

Part 6 of the user subroutine looks very similar to part 3, except that only elastic components are
considered here. It should be noted that the same variable D is used to store the elastic material
stiffness matrix, whereas in Part 3 this variable is used to store the effective material stiffness
matrix.

6 Begin
{ Create elastic material stiffness matrix D }
D[1,1]
D[1,2]
D[1,3]
D[6,6]
End

16.2.2 | Using predefined subroutines from the source
code

In order to simplify the creation of user subroutines, a number of FORTRAN subroutines and
functions for vector and matrix operations are available in the source code (to be included

in the file with the user subroutine). The available subroutines may be called by User_Mod
subroutine to shorten the code. An overview of the available subroutines is given in C Modelling
of embedded structures (p. 251).

16.2.3 | Definition of user-interface functions

In addition to the user-defined model itself it is possible to define functions that will facilitate its
use within the PLAXIS user-interface. If available, PLAXIS Input will retrieve information about
the model and its parameters using the procedures described hereafter.

procedure GetModelCount(var C:longint) ;

c = number of models (return parameter)

This procedure retrieves the number of models that have been defined in the DLL. PLAXIS
assumes that model IDs are successive starting at model ID = 1.

procedure GetModelName(var iModel : longint;
var Name : shortstring) ;

iModel

User-defined soil model number to retrieve the name for (input parameter)}

Name Model name (return parameter)
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This procedure retrieves the names of the models defined in the DLL.

procedure GetParamCount(var iModel : longint; var C: longint) ;

iModel

User-defined soil model number (input parameter)
c = number of parameters for the specified model (return parameter)
This procedure retrieves the parameter name of a specific model.

Procedure GetParamName(var iModel,iParam : longint;
var Name : shortstring);

iModel = User-defined soil model number (input parameter)
iParam = Parameter number (input parameter)
Name = parameter name (return parameter)

This procedure retrieves the parameter name of a specific parameter.

Procedure GetParamUnit(var iModel,iParam : longint;
var Units : shortstring)

iModel = User-defined soil model number (input parameter)
iParam = Parameter number (input parameter)
Units =

Parameter units (return parameter)

This procedure retrieves the parameter units of a specific parameter. Since the chosen units are
dependent on the units of length, force and time chosen by the user the following characters
should be used for defining parameter units:

'L' or 'l' for units of length 'F' or 'f' for units of force 'T' or 't' for units of time.

For model names, model parameter names and model parameter units special characters can be
used for indicating subscript, superscript or symbol font (for instance for Greek characters).

Symbol Description

n From here characters will be superscript

From here characters will be subscript

@ From here characters will be in symbol font

# Ends the current superscript or subscript.

Pairs of '""..#''_...#' and '@...#' can be nested.
For example:

A UD model parameter uses the oedometer stiffness as parameter. The parameter name can be
defined as 'E_oed#' and its units as 'F/L"2#'.

When defining a unit containing one of the letters 'l', 'f' or 't', like ' cal/mol', these letters will be
replaced by the unit of length, the unit of force or the unit of time respectively. To avoid this,
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these letters should be preceded by a backslash. For example 'cal/mol' should be defined as '
ca\l/mo\l' to avoid getting 'cam/mom".

The state variables to be displayed in the Output program can be defined.

procedure GetStateVarCount(var iModel : longint; var C :longint) ;

iModel = User-defined soil model number (input parameter)
c = number of state variables for the specified model (return parameter)
This procedure retrieves the number of state variables of a specific model.

procedure GetStateVarName(var iModel,iParam : longint;
var Name : shortstring);

iModel = Used-defined soil model number (input parameter)
iParam = Parameter number (input parameter)
Name =

Parameter name (return parameter)
This procedure retrieves the state parameter name of a specific parameter.

Procedure GetStateVArUnit(var iModel,iParam : longint;
var Units : shortstring) ;

iModel = User-defined soil model number (input parameter)
iParam = Parameter number (input parameter)
Units = Parameter units (return parameter)

This procedure retrieves the state parameter units of a specific parameter.

All procedures are defined in Pascal but equivalent procedures can be created, for instance in
a Fortran programming language. Please make sure that the data format of the parameters in
the subroutine headers is identical to those formulated before. For instance, the procedures
mentioned above use a “shorstring” type; a" shortstring” is an array of 256 characters where
the first character contains the actual length of the shortstring contents. Some programming
languages only have null-terminated strings; in this case it may be necessary to use an array
of 256 bytes representing the ASCII values of the characters to return names and units. An
example of Fortran subroutines is included in the software package.

16.2.4  UDSM additional information

To allow the use of some specific options as required and passed by the PLAXIS calculation
program, the following subroutine can optionally be defined within the UDSM implementation:

Subroutine setDLLExtraInfo( iInfo, rInfo )

info = array of integers containing the following data:

¢ info(1): "Special option" specified value (see Special option for User
Defined Soil Models [ADV] of the Reference manual).
¢ ilnfo(2): temperature measure unit, being 1: K, 2: °C, 3: °F .
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¢ ilnfo(3): length measure unit, being 1: mm, 2: cm, 3: m, 4: km, 5:in, 6: ft, 7:
yd.

* ilnfo(4): force measure unit, being 1: N, 2: KN, 3: MN, 4: Ibf, 5: kip.

¢ iInfo(5): time measure unit, being 1: sec, 2: min, 3: hour, 4: day.

rinfo = array of floating points, currently not used.

The main purpose of this subroutine is to offer to users implementing a UDSM a way to
retrieve and store (e.g. in a module) the measure units adopted at the same time by the PLAXIS
calculation kernel and therefore comply with these or transform to and from these within the
UDSM implementation.

16.2.5 | Compiling the user subroutine

The user subroutine Usexr_Mod has to be compiled into a DLL file using an appropriate compiler.
Note that the compiler must have the option for compiling DLL files. Below are examples for two
different FORTRAN compilers. It is supposed that the user subroutine User_Mod is contained in
the file USRMOD.FOR.

After creating the user subroutine User_Mod, a command must be included to export data to the
DLL. 64-bit compiler must be used.

The following statement has to be inserted in the subroutine just after the declaration of
variables:

® Using GNU Fortran:

IDEC$ATTRIBUTES DLLExport :: User_Mod

® Using Intel Visual Fortran:
IDEC$ ATTRIBUTES DLLExport,StdCall,Reference :: User_Mod

In order to compile the USRMOD.FOR into a DLL file, the following command must be executed:
* Using GNU Fortran:

gfortran USRMOD.FOR -o usermod64.dll -shared -fno-underscoring -static

® Using Intel Visual Fortran:
ifort /winapp USRMOD.FOR DFUsrLib.lib /d11

In all cases USRMODG64.DLL file will be created. It can be renamed to 'any64' .dll. This file
should be placed in the usdm folder under the PLAXIS program directory, thereafter it can be
used together with the existing PLAXIS calculations program (PLASW.EXE in PLAXIS 2D or
PLASW3DF.EXE in PLAXIS 3D ). Once the User-defined Soil Model is used, PLAXIS will execute
the commands as listed in the USRMODG64.DLL file.

16.2.6 | Debugging possibilities

When making computer programs, usually some time is spent to 'debug’' earlier written source
code. In order to be able to effectively debug the user subroutine, there should be a possibility
for the user to write any kind of data to a file. Such a 'debug-file' is not automatically available
and has to be created in the user subroutine.
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After the debug-file is created, data can be written to this file from within the user subroutine.
This can be done by using, for example, the availably written subroutines (D Fortran subroutines
for User-defined soil models (p. 253)).

16.3 ' Input of UD model parameters via user-
interface

Input of the model parameters for user-defined soil models can be done using the PLAXIS
material data base. In fact, the procedure is very similar to the input of parameters for the
existing PLAXIS models.

When creating a new material data set for soil and interfaces in the material data base, a window
appears with six tabsheets: General, Mechanical, Groundwater, Thermal, Interfaces, Initial
Figure 16-1 (p. 187). A user-defined model can be selected from the Material model combo

box in the General tabsheet.

Soil - UBC3D-PLM - <MoName=

< ko [
General Mechanical Groundwater Thermal Interfaces Initial
Property Unit Value
Material set
Identification <MoMame =
Soil model UBC3D-PLM L
Drainage type Linear Elastic A
| Mohr-Coulomb
Ceas Hardening Soil
Comments HS small
Soft Soil
Soft Soil Creep
Unit weights Jointed Rock
¥ uneat kN/m? Modified Cam-day
MGI-ADP
Vg kMN/fm?
=t Hoek-Brown
Void ratio Sekiguchi-Ohta Inviscd
- Sekiguchi-Ohta Viscd
ini
Concrete
Minit UBC3D-PLM
Rayleigh damping UDCAM-5
Input method
0.000
0.000
& Y 0.000
&2 o 0.000
fy Hz 0.1000
f2 Hz 1.000
Mext [o]'4 Cancel

Figure 16-1: Selection Window. Selection of user-defined soil models
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Soil - User-defined - <NoMName>

3 I

General Mechanical Groundwater Thermal Interfaces Initial

Property Unit Value
User-defined model
DLL file pmdsanda4.di -
Model in DLL PM45and -

User-defined parameters

DRO 0.000
GO 0.000
hp0 0,000
pA kifms 0.000
Emax 0,000
emin 0.000
nb 0,000
nd 0.000
phi,, " 0.000
nu 0.000
Q 0,000
R 0,000
PostShake 0.000

Excess pore pressure calculz
Determination v-undrained definition -

0.4950

Mext oK Cancel

Figure 16-2: Selection window. Input of parameters

After inputting general properties, the appropriate UD model can be chosen from the available
models that have been found by PLAXIS Input.

The Mechanical tabsheet shows two combo boxes; the top combo box lists all the DLLs that
contain valid UD models and the next combo box shows the models defined in the selected DLL.
Each UD model has its own set of model parameters, defined in the same DLL that contains the
model definition.

When an available model is chosen PLAXIS will automatically read its parameter names and units
from the DLL and fill the parameter table below.

16.3.1! Interfaces
The Interfaces tabsheet, Figure 16-3 (p. 189), contains the material data for interfaces.

Normally, this tabsheet contains the Rj.; parameter. For user-defined soil models the interface
tabsheet is slightly different as for a user-defined soil model the interface properties cannot be
taken from the material set, but should be explicitly defined. The stiffness can be specified in 2
ways through the Stiffness determination parameter: either a Direct specification of the interface
stiffness parameters k, and kg, or by specification of the interface stiffness from the oedometer

stiffness modulus , Eyqq ref Additionally, the interface strength parameters Cinter, Qinter aNd Winter

must be specified. Hence, the interface shear strength is directly given in strength parameters
instead of using a factor relating the interface shear strength to the soil shear strength, as it is
the case in PLAXIS models.
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Soil - User-defined - <NoMName>

2 B 0
General Mechanical Groundwater Thermal Interfaces [nitial
Property Unit Value
Stiffness
Stiffness determination From Eced -
Eoed™ kifm? 0.000
UD-Power 0.000
up-p=f knfm2 100.0
Strength
Crefinter knijm= 0.000
@ iner (PRI e 0.000
Wi (BS1) 2 0,000
Consider gap dosure
Groundwater
Cross permeability Impermeable -
Drainage conductivity, dk m3/day/m 0.000
Thermal
R thermal m2 Kk 0.000
MNext oK Cancel

Figure 16-3: Interface tabsheet

In addition, two parameters are included to enable stress-dependency of the interface stiffness
according to a power law formulation:

o UD-Power
Eoca (0,) = ot <UD_—”Pref> (16-3)
where
UD-Power Rate of stress dependency of the interface stiffness
UD-p"! = Reference stress level (usually 100 kN/m?)
o' = Effective normal stress in the interface stress point.

After having entered values for all parameters, the data sets can be assigned to the
corresponding soil clusters, in a similar way as for the existing material models in PLAXIS.
The user-defined parameters are transmitted to the calculation program and appear for the
appropriate stress points as Props(1..50) in the User_Mod subroutine.
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Application of advanced soil models

In this chapter, advanced soil models will be utilised in various applications in order to illustrate
the particular features of these models.

171 Hardening Soil model: Response in
drained and undrained triaxial tests

In this section, the Hardening Soil model is utilised for the simulations of drained and undrained
triaxial tests. Arbitrary sets of model parameters, Table 17-1 (p. 190), representing sands of
different properties, are considered.

Table 17-1: Arbitrary Hardening Soil parameters for sands of different densities

Parameter Loose Medium Dense Unit
ref
Eso ~ tfor 20000 30000 40000 [kN/m?]
Pref = 100 kPa)
Eur" (for preg 60000 90000 120000 [kN/m?]
= 100 kPa)
ref
Eoeq ~ (for 20000 30000 40000 [kN/m?]
Pref = 100 kPa)
Cohesion ¢ 0.0 0.0 0.0 [KkN/m?]
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Parameter Loose Medium Dense Unit

Friction angle ¢ 30 35 40 °
Dilatancy angle ¢ 0 5 10 °
Pr‘;'tsigovrlrs 0.2 0.2 0.2 -
Power m 0.5 0.5 0.5 -
Ko™ (using Cap) 0.5 0.43 0.36 -

Tensile strength 0.0 0.0 0.0 [KkN/m?]
Failure ratio 0.9 0.9 0.9 -

A triaxial test can simply be modelled by means of an axisymmetric geometry of unit dimensions
(Tm x 1m), that represent a quarter of the soil specimen, Figure 17-1 (p. 191). These

dimensions are not realistic, but they are selected for simplicity. The dimension of the model
does not influence the results, provided that the soil weight is not taken into account. In

this configuration the stresses and strains are uniformly distributed over the geometry. The
deformation magnitudes in x- and y-direction of the top right hand corner correspond to the
horizontal and vertical strains respectively.

The left hand side and the bottom of the geometry are axes of symmetry. At these boundaries
the displacements normal to the boundary are fixed and the tangential displacements are kept
free to allow for 'smooth' movements. The remaining boundaries are fully free to move.

The value of the applied loads can be controlled by the load multipliers such as >MloadA

and ZMloadB. However, in PLAXIS 2DPLAXIS 3D, and as described in the Reference Manual

, the load configurations and magnitudes can be specified in the Input program. Then in the
calculation program these loads can be activated or deactivated by means of the Staged
construction option. For this case, and to simulate the confining pressure p', distributed loads

of -100 kN/mzrepresenting the principal stresses o'; (load A) and ¢'3 (load B) are applied in the
Input, as shown in Figure 17-1 (p. 191).

Figure 17-1: Simplified configuration of a triaxial test

A very course mesh is sufficient for this simple analysis. Initial stresses and steady pore
pressures are not taken into account.

In the calculation program, the calculation of all phases can be done by means of the Staged
construction process. In the first phase, the confinement pressure p' is applied by activating
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load A and B. In the second phase the displacements are reset to zero and the sample is
vertically loaded up to failure while the horizontal load is kept constant. This implies modification
of load A by double clicking the load in the geometry model. As a result a load window appears
in which the input values of the load can be changed. (Details of the procedure can be found

in the Reference and Tutorial manuals). The latter phase is carried out for drained as well as

undrained conditions.

These calculations are performed for the three different sets of material parameters, Table 17-1
(p. 190). The computational results are presented in the figures on the following pages.

Figure 17-2 (p. 192)shows the principal stress difference versus the axial strain for the drained
condition. This shows a hyperbolic relationship between the stress and the strain, which is

typical for the Hardening Soil model. Obviously, the failure level is higher when the sand is
denser. The Hardening Soil model does not include softening behaviour, so after reaching failure

the stress level does not reduce, at least in the drained tests.

400
Dense
300 /
/ Medium
. /
S
~
z,
A Loose
— 200 i
o~
S L
3'— /
100 /
0 ] I ]
0 0.01 0.02 0.03 0.04 0.05 0.06

_gl

Figure 17-2: Results of drained triaxial tests using the Hardening
Soil model, Principal stress difference versus axial strain.

Figure 17-3 (p. 193) shows the axial strain versus the volumetric strain for the drained test.

This graph clearly shows the influence of dilatancy in the denser sands. In contrast to the Mohr-
Coulomb model, the transition from elastic behaviour to failure is much more gradual when using
the Hardening Soil model. In fact, in the Hardening Soil model, plastic strain occurs immediately

after load application.
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Figure 17-3: Results of drained triaxial tests using the
Hardening Soil model, Volumetric strain versus axial strain

In the undrained tests, Figure 17-4 (p. 193), the failure level is, in principle, lower than that
of the drained tests. However, for the medium and dense sands the stress level continues to
increase after reaching the failure level due to the fact that dilatancy occurs which causes

reduction of excess pore pressures and thus increase of the effective stresses. This can be seen
in Figure 17-5 (p. 194).

200 V4
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S 80
1
o
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Figure 17-4: Results of undrained triaxial tests using the Hardening
Soil model, Principal stress difference versus axial strain
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Figure 17-5: Results of undrained triaxial tests using the
Hardening Soil model, Excess pore pressure vs axial strain

Figure 17-6 (p. 195) shows the effective stress paths, for the medium sand, during both the
drained and undrained tests. During first phase (isotropic loading), both tests were drained. In
the second phase there is a clear distinction between the two tests. In the undrained test the
effective horizontal stress reduces while the vertical stress increases due to the development
of excess pore pressures. The decrease in horizontal effective stress is more than when if the
Mohr-Coulomb model would have been used. This is attributed to the plastic compaction (Cap
hardening) that occurs in the Hardening Soil model.
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Figure 17-6: Stress paths for drained and undrained triaxial
tests using the Hardening Soil model for medium sand

17.2 | Application of the Hardening Soil model
on real soil tests

In this section the ability of the Hardening Soil model to simulate laboratory tests on sand is
examined by comparing PLAXIS calculation results with those obtained from laboratory tests
provided by Prof. J. Desrues (University Joseph Fourier, Grenoble, France). Extensive laboratory
tests were conducted on loose and dense Hostun sand. On the basis of these tests the model
parameters for the Hardening Soil model were determined and they are presented in Table 17-2

(p. 195).

Table 17-2: Hardening Soil parameters for loose and dense Hostun sand

Parameter Loose sand Dense sand Unit
Unit weight y 17 17.5 kN/m®
Eso"™ (Dres = 100 kPa) 20000 37000 kN/m?
Ewr™ (preg = 100 kPa) 60000 90000 kN/m®
ref
E:e1doo kg';r)ef 16000 29600 kN/m?
Cohesion ¢’ 0.0 0.0 kN/m?
Friction angle ¢' 34.0 41.0 °
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Parameter Loose sand Dense sand Unit
Dilatancy angle ¢ 0.0 14.0 °
Poisson's ratio v, 0.2 0.2 -

Power m 0.65 0.5 -

Ko™ 0.44 0.34 -
Tensile strength 0.00 0.00 kN/m?

Failure ratio 0.9 0.9 -

17.21 ! Triaxial Test

Standard drained triaxial tests were performed on loose and dense sand specimens. The
procedure for the simulation of the triaxial tests in PLAXIS has been described in 17.1 Hardening
Soil model: Response in drained and undrained triaxial tests (p. 190). In the first phase the

sample is isotropically compressed up to a confining pressure of p' = -300 kN/mz. In the
second phase the sample is vertically loaded up to failure while the horizontal stress (confining
pressure) is kept constant. The computational results and the measured data are presented in
Figure 17-7 (p. 196) to Figure 17-10 (p. 197).

|o1-03| [kPa]
1000
800 P —— s
f
600
® Hardening soil model
400
- test data
200
0
0 5 10 15

-€1 [%)]

Figure 17-7: Results of drained triaxial tests on loose
Hostun sand, deviatoric stress versus axial strain
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— = 2

-€1 [%]

Figure 17-8: Results of drained triaxial tests on loose
Hostun sand, volumetric strain versus axial strain
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Figure 17-9: Results of drained triaxial tests on dense
Hostun sand, deviatoric stress versus axial strain
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Figure 17-10: Results of drained triaxial tests on dense
Hostun sand, volumetric strain versus axial strain

The figures show that the computational results match reasonably with the test data. It can be

seen that the material response (measured and computed) show gradual transition from elastic
to plastic behaviour. As such the relation between the deviatoric stress and the axial strain can
be approximated by a hyperbola.
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The failure level is fully controlled by the friction angle (the cohesion is zero). The test results
on dense sand show softening behaviour after the peak load has been reached. Modelling of
the softening behaviour, however, is not incorporated in the Hardening Soil model, and thus,
the deviatoric stress remains constant. It can also be seen from the test data that the dilatancy
reduces during softening. However, in the Hardening Soil model the dilatancy continues to
infinity, unless the dilatancy cut-off option has been used.

17.2.2 | Oedometer test

As for the triaxial tests, a set of oedometer tests on both loose and dense sands (Table 17-2
(p. 195)) was conducted. In PLAXIS 2D the oedometer test is simulated as an axisymmetric
geometry with unit dimensions (Figure 17-11 (p. 198)). A coarse mesh is sufficient for this case.

A

- .

Figure 17-11: Simplified configuration of an oedometer test

The computational results as compared with those obtained from the laboratory tests are shown
in Figure 17-12 (p. 199) and Figure 17-13 (p. 199).
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Figure 17-12: Results of oedometer test on loose Hostun sand, axial stress versus axial strain
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Figure 17-13: Results of oedometer test on dense Hostun sand, axial stress versus axial strain

From a stress free state the loose sand sample is loaded consecutively to 25 kPa, 50 kPa, 100
kPa and 200 kPa with intermediate unloading. The dense sand sample is loaded to 50 kPa, 100
kPa, 200 kPa and 400 kPa with intermediate unloading.

As it can be seen, the computational results show a reasonable agreement with the test data. No
doubt, distinction should be made between loose and dense soil, but it seems that for a soil with
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a certain density the stiffness behaviour under different stress paths can be well captured with
a single set of model parameters. (A small offset of 0.15% has been applied to the computational
results of the loose sample in order to account for the relative soft response at the beginning of
the test.)

17.2.3 | Pressiometer test

In this section the Pressiometer test is simulated and results from PLAXIS 2DPLAXIS 3D and
laboratory tests (Branque, 1997) are compared. Laboratory testing results on dense sand with
material parameters listed in Table 17-2 (p. 195) are used.

In the field, the pressiometer of 0.044 m diameter covered with a membrane of 0.16 m height is
attached to the Cone penetration shaft. In the laboratory, the pressiometer is attached to a 0.044
m pipe (ro = 0.022 m) and placed in a circular calibration chamber with a diameter of 1.2 m and a
height of 1.50 m. A high overburden pressure of 500 kPa is applied to the surface to simulate the
stress state at larger depths.

In PLAXIS 2D a quarter of the geometry is simulated by an axisymmetric model (Figure 17-14
(p. 200)). The left boundary is placed 0.022 m away from the vertical axis of symmetry. A
line displacement is generated at the left model boundary, set to be free in vertical direction
and fixed in horizontal direction. The overburden pressure is simulated by the load A, and the
volumetric expansion of the pressiometer is simulated by imposing a horizontally distributed
load, load B (Figure 17-14 (p. 200)). Therefore the initial boundary conditions have to be
changed at the level of the pressiometer in order to allow for horizontal displacements.

Load A
0.59 m
Axis of
symmetry
N
Load B || RZ1 | RZ2 0.08 m
Al | |
~0.078 m 0.08 m 0.42 m -
,=0.022 m ' Axis of
symmetry

Figure 17-14: Model geometry and generated mesh
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To allow for a discontinuity in horizontal displacements, a vertical interface along the shaft

of the pressiometer borehole and a horizontal interface just above the pressiometer are
introduced. Both interfaces are set rigid (Rjyter = 1.0). Extra geometry lines are created around
the pressiometer to locally generate a finer mesh (Figure 17-14 (p. 200)). A Coarseness factor
equal to 0.1is used for the refinement zone 1 (RZ1) and a Coarseness factor of 0.3 is used for
the refinement zone 2 (RZ2). For the Element distribution the Medium option is selected .

After the generation of initial stresses in the Initial Phase, the vertical overburden load (load A)

is applied in Phase 1. The left model boundary is horizontally fixed via the line displacement

as discussed above, while the bottom and right model boundaries are set to Normally fixed

via the in the Model explorer window. A plastic calculation is performed. For the subsequent
calculation phases, the left model boundary should be set to Free via the Deformations option in
the Model explorer window.

In Phase 2, the line displacement which is placed at the level of the pressiometer, at the left
boundary, is deactivated. The Load B is activated in order to maintain equilibrium, i.e. zero
deformation. The magnitude of this load increases linearly with depth and it is calculated

based on the vertical stress and Jaky's formula (for normally consolidated soils). Thus the
horizontal load acting on the node located at the top of the pressiometer equals 176.0 kPa and
the horizontal load acting on the node located at the bottom model boundary equals 176.5 kPa. A
plastic calculation is performed in Phase 2 as well.

In both Phases 1and 2, the Tolerated error is set equal to 0.0001 and the Max load fraction
per step is set to 0.01to increase the accuracy of the numerical calculation. This is important
in order to meticulously replace the horizontal fixity with the horizontal load at the level of the
pressiometer in Phase 2.

© Note:

Note that the values at the edges of the horizontal load mentioned above are calculated
analytically and may slightly differ from the numerical results at the corresponding
nodes, at the end of Phase 1. This is because the numerically obtained values depend
on the selected number of mesh elements (mesh discretization) and on the used
numerical settings for the plastic calculation in Phase 1. The user may check this
discrepancy and if necessary use the numerical values to maintain equilibrium.

In the following calculation Phase 3, the pressure (load B) is further increased by use of Staged
construction. Thus the load B is set equal to 2500 kPa. An Updated mesh analysis is used. The
Tolerated error is 0.01 (default value) and the Max load fraction per step is set to 0.1. The
results of this calculation are presented in Figure 17-15 (p. 202) and Figure 17-16 (p. 203).
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Figure 17-15: Effective principal stress distribution at the vicinity of the
pressiometer, for a pressure of 2427 kPa (scaled up 4x10-6 times) ® times)

Figure 17-15 (p. 202) shows details of effective principal stress distribution when the pressure
in the pressiometer is 2427 kPa. The high passive stresses appear very locally near the
pressiometer. Just above the pressiometer the vertical stress is very low due to arching effects.
Away from the pressiometer, a Kp-like stress state exists.

Figure 17-16 (p. 203) depicts a comparison of the numerical results with those obtained from
the laboratory test. A Node A at the interface, at the bottom left corner of the model, is selected
to illustrate the results (Figure 17-14 (p. 200)). In Figure 17-16 (p. 203) the pressiometer
pressure P is plot against volumetric deformation A V/V,. Because the calculation in Phase 3
was run by accounting for large deformations (updated mesh analysis), the pressure P in the
pressiometer is calculated by \eqnref{PressiometerPressureP}, based on the output quantity
>Mstage of Phase 3, the value of the applied Load B in Phase 2 (LoadB, = 176.5 kPa), the value
of the applied Load B in Phase 3 (LoadB3 = 2500 kPa) and a correction factor to account for
large deformations:

P = (Loang + Z M stage(LoadBs — Loang)) TO_T_—OUW (17-1)
where
To = Initial radius (0.022 m)
Upr = Radial deformation of the Node A
© Note:

By considering updated mesh analysis, the area E upon which pressure P acts, should
be adjusted to the increasing radius, from rp to ro + u,. Assuming an angle 6 of 1rad, the
length of the corresponding arc is s = r 8. The area E is equal to the length s times the
height of the membrane H (0.08 m). Force equilibrium between the initial state (rp) and

To

every next step of the calculation (rp + u,) results in the correction factor 75, —. The
latter is taken into account in Egn. 17-1 (p. 202) .
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The volumetric deformation AV/V, cannot be directly obtained from PLAXIS and it is calculated
by Eqgn.17-2 (p. 203) , based on the initial radius rg and the lateral expansion u,, of the

pressiometer at the Node A:

2 2
AV _ (7"0 +Urr) T (17-2)
Vo r
Based on Figure 17-16 (p. 203) it is concluded that the agreement between the numerical
results and the experimental data is very good, both for the initial part of the loading curve and
for larger volumetric deformations up to 30%. The original set of parameters for the dense sand
that were derived from triaxial testing seem to match the pressiometer data quite well.
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Figure 17-16: Comparison of numerical results and pressiometer test data

17.2.4  Conclusions of the Application of the Hardening
Soil model on real soil tests

The test results indicate that by using the Hardening Soil model it is possible to simulate different
laboratory tests with different stress paths. This cannot be obtained with simple models such

as the Mohr-Coulomb model without changing input parameters. Hence, the parameters in the
Hardening Soil model are consistent and more or less independent from the particular stress
path. This makes the Hardening Soil model a powerful and an accurate model, which can be
used in many applications.

17.3 | Application of the Hardening Soil model
with small-strain stiffness on real soil tests

In this section, the ability of the Hardening Soil model with small-strain stiffness (HS small
model) to simulate laboratory tests is examined. Both, the laboratory test data and the basic HS
parameters are identical to those presented in the previous section. The two additional small
strain parameters used in the Hardening Soil model are quantified in Table 17-3 (p. 204).
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Table 17-3: Additional HSsmall model parameter for loose and dense Hostun sand

Parameter Loose sand Dense sand Unit
Go '™ (pref = 100 kPa) 70000 112500 [N/m?]
Yo.7 0.0001 0.0002 [-]

Triaxial tests on loose and dense Hostun sand are presented in Figure 17-17 (p. 204) and
Figure 17-18 (p. 205) respectively. As a reference, the previously obtained results from the
Hardening Soil model are plotted as well.

4 0y/0,

6, =100 kPa CD

ESVOI[_]
- -0.20
- -0.16
]
F-0.12
- -0.08

- -0.04

o, =300 kPa CD Agy -]

r-0.20

r-0.16

r-0.12

- -0.08

r -0.04

o, =600 kPa CD

ESVOI[_]

- -0.20
- -0.16
r-0.12
- -0.08

- -0.04

0.08

A Ggeoant [kN/m?] Experiment
—— HS (original)
60000 +
&—e—e [ISsmall
40000 -
20000
O T T T
0.0001 0.001 0.01 &,-€4l]
A GSccant [kN/mZ]
120000 -
80000 1
40000
0 M) B LA — >
0.0001 0.001 0.01 &€l
2
0 GSecant [kN/m ]
200000 -
100000 .,
O T T T >

0.0001

0.001 0.01

Figure 17-17: Excavation Drained triaxial tests on loose Hostun sand at confining pressures
of 100, 300, and 600 kPa. Left: Stress-strain data. Right: Shear modulus reduction
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Figure 17-18: Drained triaxial tests on dense Hostun sand at confining pressures
of 100, 300, and 600 kPa. Left: Stress-strain data. Right:Shear modulus reduction

The overall stress-strain data obtained from both models seems almost identical. Only a closer
look at the small-strain domain shows a clear difference: The Hardening Soil model with small-
strain stiffness follows a S-shaped stiffness reduction curve with much higher initial stiffness
than the one of the Hardening Soil model. Generally, both models match the test data at different
confining pressures reasonably well.

Figure 17-19 (p. 206) presents results from a cyclic triaxial test by Rivera & Bard on dense

sand. The Hardening Soil model with small-strain stiffnesssmall simulation of the test shows
material damping which could not be obtained when simulating the test with the Hardening Soil
model. As virgin loading is conducted in triaxial compression, the unloading sequence in triaxial
extension gives some plasticity. Therefore the first unloading / reloading loop is not closed.
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Figure 17-19: Hysteresis loop in a drained triaxial test on dense
Hostun sand. Test data published in Biarez & Hicher (1994).

17.4 | Soft Soil Creep model : Undrained
triaxial tests at different loading rates

In this section the Soft Soil Creep model (see 11 Soft Soil Creep model (time dependent
behaviour) [ADV] (p. 117)) is utilised for the simulation of clay in an undrained triaxial test, at
various strain rates. The model parameters are obtained from test results on Haney Clay and are
listed in Table 17-4 (p. 206) .

The initial isotropic preconsolidation pressure P, = 373 kN/mz, as reported in the literature, is

obtained by specifying a POP of 433 kN/m? in the initial conditions.

Table 17-4: Soft Soil Creep model parameters for Haney clay

Parameter Symbol Value Unit
Modified A 0105 -
compression index
Modified *
swelling index K 0.016 )
Secondary u 0.004 ~
compression index
Poisson's ratio Vur 0.5 -
Cohesion c 0.0 [kN/m?]
Friction angle 0] 32 [°]
Dilatancy angle W 0.0 [°]
Coefficient of ne _
lateral stress Ko 0.61 [-]
Permeability ky . ky 0.0001 [m/day]

17.4 Soft Soil Creep model

: Undrained triaxial tests at different loading rates | 206




Parameter Symbol Value Unit

Pre overburden 2
pressure pPoP 433 [kN/m?]

Modelling of the triaxial test is as described in 17.1 Hardening Soil model: Response in drained
and undrained triaxial tests (p. 190). However, here, a quarter of the real dimension of the test

set-up is simulated (17.5 x 17.5 mm?). Figure 17-20 (p. 207) illustrates the model geometry. The

specimen surfaces (top and right hand side in Figure 17-20 (p. 207)) are assumed drained
whereas the other boundaries are assumed closed.

A
-| T T , prescribed displacement
1| ¥ b

x : e

0.0176 m
=
b=

Y i — — = e = = i
Y  00175m

)

Figure 17-20: Modelling of triaxial test on Haney clay. Left,
Initial configuration. Right, configuration for phases 9 to 11

The Very coarse option is selected for the Element distribution. To generate the graphs
presented further below, mesh points need to be selected. More specifically, a node located at
the top model boundary (e.g. with coordinates (0.0175, 0.0175)) is needed to generate Figure 17—
21 (p. 207), while a stress point with coordinates (0.0110, 0.0050) is needed for Figure 17-22

(p. 208).
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Figure 17-21: Average deviatoric stress versus axial strain for different strain rates
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Figure 17-22: p'- q stress paths for different strain
rates for a point at position (0.0110, 0.0050)

In addition to isotropic loading, prescribed displacements are also applied. Both types of loading
are simulated using the Staged construction option. During isotropic loading, horizontal and
vertical loads are applied. The calculation phases for isotropic loading consist of undrained
plastic and consolidation analyses.

After the isotropic loading phases, the displacements are reset to zero. The vertical load is
deactivated and the prescribed displacement is activated. Rate of loading is simulated by
applying prescribed displacements at different velocities. As such, a total of 12% axial strain (2.1
mm, vertical displacement) is applied in 8.865 days (0.00094%/min), 0.0556 days (0.15%/min)
and 0.00758 days (1.10%/min) respectively. Each of the prescribed displacement loading phases
9 to 11 starts from the end of the last consolidation phase 8. The calculation scheme is listed in
Table 17-5 (p. 208).

Table 17-5: Loading scheme for triaxial tests at different loading rates

Phase | Starts from | Calculation| Top load | Side load Pisplacemeny Time
type [kPa] [kPa] [m] interval
[day]
1 0 Plastic -65 -65 Inactive 0.00
2 1 Consolidation -65 -65 Inactive 0.01
3 2 Plastic -130 -130 Inactive 0.00
4 3 Consolidation -130 -130 Inactive 0.01
5 4 Plastic -260 -260 Inactive 0.00
6 5 Consolidation -260 -260 Inactive 0.01
7 6 Plastic -520 -520 Inactive 0.00
8 7 Consolidation -520 -520 Inactive 0.01
9 8 Plastic Inactive -520 0.0021 8.865
10 8 Plastic Inactive -520 0.0021 0.0556
il 8 Plastic Inactive -520 0.0021 0.00758
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The computational results are presented in Figure 17-21 (p. 207) and Figure 17-22 (p. 208).
Figure 17-21 (p. 207) illustrates the average deviatoric strain qqyerage VErsus the principal strain
g1 for phases 9 to 11. The average deviatoric strain is obtained as:

2Fy

Qaverage = F — 03

where:

R=0.0175 and 063=-520 kN/m®

(17-3)

In Eqn. 17-3 (p. 209) , Fy is the reaction force against the applied prescribed displacement
(Forcey). The principal strain g7 is obtained by dividing the vertical displacement u,, of a node
located at the top boundary by the height of the model (0.0175 m). The starting point in Figure

17-21 (p. 207) is deliberately selected to be zero.

Based on Figure 17-21 (p. 207), it can be seen that the shear strength highly depends on the

strain rate; the higher strain rate the higher the shear strength.

Figure 17-22 (p. 208) shows the p' - g stress paths from the prescribed displacement loading
phases. For higher strain rates there is a smaller reduction of the mean effective stress, which
allows for larger ultimate deviatoric stress. It should be noted that the stress state is not
homogeneous at all, because of the inhomogeneous (excess) pore pressure distribution. This is
due to the fact that points close to draining boundaries consolidate faster than points at a larger

distance.

In addition to the full tests as described before, the last part of the test can also be done in a
simplified way using the Soil Test facility. Since the Soil Test facility operates on a single stress
point, it is not possible to start the undrained triaxial tests from an inhomogeneous stress state,
as considered in the full finite element based model. Instead, we start from an isotropic effective

stress of 500 kN/mZ.

Table 17-6: Input parameters for the Soil Test facility

Input parameter

A(0.00094 % /min)

B(0.15%/min)

C(1.10%/min)

Type of test

Triaxial, Undrained

Undrained & Triaxial

Undrained

Direction Compression Compression Compression
Consolidation Isotropic Isotropic Isotropic
Initial effect. 500 kN/m? 500 kN/m? 500 kN/m?
stress |o3'|
Maximum strain |g] 12.0% 12.0% 12.0%
Time At 8.865 days 0.0556 days 0.00758 days
Number of steps 200 200 200
|Vert. precons. stress| 433 kN/m? 433 kN/m? 433 kN/m?

17.5 | Soft Soil Creep model: Response in one-
dimensional compression test

In this section the behaviour of the Soft Soil Creep model is illustrated on the basis of a one-
dimensional compression test on clay. Two types of analysis are performed. First, the test
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is simulated assuming drained conditions in order to demonstrate the logarithmic stress-

strain relationship and the logarithmic time-settlement behaviour on the long term (secondary
compression). Second, the test is simulated more realistically by including undrained conditions
and consolidation. Since the consolidation process depends on the drainage length, it is
important to use actual dimensions of the test set-up. In this case an axisymmetric configuration
with specimen height of 0.01 m, Figure 17-23 (p. 210), is used. The material parameters are
shown in Table 17-7 (p. 210). The parameter values are selected arbitrarily, but they are

realistic for normally consolidated clay. The vertical preconsolidation stress is fixed at 50 kPa
(POP = 50 kPa).

0.01 m

T - - .

X
Figure 17-23: One-dimensional compression test

Table 17-7: Soft Soil Creep model parameters for one-dimensional compression test

Parameter Symbol Value Unit
Unit Weight v 19 kN/m®
Permeability Ky, Ky 0.0001 m/day
Modlflec{ 2" 010 _
compression index
Modified *
swelling index K 0.02 )
Secondary u 0.005 _
compression index
Poisson's ratio Vur 015 -
Cohesion c 1.0 kN/m?
Friction angle [0) 30 °
Dilatancy angle 1 0.0 °
Coefficient of K, e 0.5 B

lateral stress

17.5.1/ Drained analysis

In the first analysis successive plastic loading steps are applied using drained conditions. The
load is doubled in every step using Staged construction with time increments of 1 day. After the
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last loading step an additional creep period of 100 days is applied. The calculation scheme is

listed in Table 17-8 (p. 211). All calculations are performed with a tolerance of 1%.

Table 17-8: Calculation scheme for the drained case

. . Time .
Phase CaI::;I:)a:lon L?::::g Load [kPa] interval Er;:at;:?e
[day]
1 Plastic Staged 10 1 1
construction
2 Plastic Staged 20 1 2
construction
3 Plastic Staged 40 1 3
construction
4 Plastic Staged 80 1 4
construction
5 Plastic Staged 160 1 5
construction
6 Plastic Staged 320 1 6
construction
7 Plastic Staged 640 1 7
construction
8 Plastic Staged 640 100 107
construction

17.5.2 | Undrained analysis

In the second analysis the loading steps are instantaneously applied using undrained conditions.
After each loading step a consolidation of 1 day is applied to let the excess pore pressures fully
dissipate. After the last loading step, an additional creep period of 100 days is again introduced.

The calculation scheme for this analysis is listed in Table 17-9 (p. 211). All calculations are
performed with a reduced tolerance of 1%.

Table 17-9: Calculation scheme for second analysis

. . Time .
Phase Calculation L9ad|ng Load [kPa] interval End time
type input [day] [day]

1 Plastic Staged' 10 0 0
construction

2 Consolidation Staged. 10 1 1
construction

3 Plastic Staged 20 0 1
construction

4 Consolidation | __Staged 20 1 2
construction
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Time

construction

Phase Calculation Lgadmg Load [kPa] interval End time
type input [day] [day]

5 Plastic Staged 40 0 2
construction

6 Consolidation Staged' 40 1 3
construction

7 Plastic Staged 80 0 3
construction

8 Consolidation | __Staged 80 1 4
construction

9 Plastic Staged 160 0 4
construction

10 Consolidation | __>taged 160 1 5
construction

1 Plastic Staged 320 0 5
construction

12 Consolidation | __>taged 320 1 6
construction

13 Plastic Staged 640 0 6
construction

14 Consolidation Staged 640 1 7
construction

15 Consolidation Staged 640 100 107

Figure 17-24 (p. 213) shows the load-settlement curves of both analyses. It can be seen

that, after consolidation, the results of the undrained test match those of the drained test. The
influence of the preconsolidation stress can clearly be seen, although the transition between
reloading and primary loading is not as sharp as when using the Soft Soil model. In fact, the

results presented here are more realistic. The transition is indeed around 50 kPa.

17 Application of advanced soil models | 212




00 ¢ g r o

_______________ J R ———
[}
|
1
|
g 0001 T Reme
=S S N
£ i
9 i
B -0.002f o T
D] 1
|
! v ¥
________________ R DR
1
[}
i
-0.003f o S foommmmmoos
i I
| o
10 100 1000

1 o, [kPa]

Figure 17-24: Load-settlement curve of oedometer test with Soft Soil Creep model. A)
Transient loading with doubling of loading within one day. B) Instantaneous loading with
doubling of load at the beginning of a new day. C) As 'A' using Updated Mesh calculation

From the slope of the primary loading line one can back-calculate the modified compression

index A" = Ae;/In (%1&”) ~ 0.10. Note that 1 mm settlement corresponds to £; = 10%. For

an axial strain of 30% one would normally use an Updated mesh analysis, which has not been
done in this simple analysis. If, however, the Soft Soil Creep model would have been used in
an Updated mesh analysis with axial strains over 15% one would observe a stiffening effect as
indicated by line C in Figure 17-24 (p. 213).

Figure 17-25 (p. 214) shows the time-settlement curves of the drained and the undrained
analyses. From the last part of the curve one can back-calculate the secondary compression

index p* = Aey/In (At/ty) ~ 0.005 (with ty = 1day).

17 Application of advanced soil models | 213



-0.0

8 | |
B : ! |
************ —A-——- -t === = = —— —————4
1 I |
1 | |
1 | |
1 I |
_, 0eot oo AR Frmm - 1
£ 1 1 |
—_ I | |
a I | |
5 l L ]
E B - [ |
5] 1 | |
E=] 1 | I
3 | | |
0002 Lo S S |
| | :
1 I |
1 I |
I | |
———————————— +--—-—————-—} """~ === === === —————=—=——
1 | |
1 | |
| | :
0003 Lo R - T A SN |
| | :
1 |
I | |
u! |! iy L L ||||H}

01 1 10 100 time [days]

Figure 17-25: Time-settlement curve of oedometer test with Soft Soil Creep
model. A) Transient loading with doubling of loading within one day. B)
Instantaneous loading with doubling of load at the beginning of a new day

Another interesting phenomenon is the development of lateral stresses. During primary loading,

the lateral stress is determined by K, ", appropriate for normally consolidated soil. During
unloading, the lateral stress decreases much less than the vertical stress, so that the ratio o'y, /
o'yy increases.

To show these effects the calculation is continued after with a new drained unloading phase that
starts from phase 7 (see Table 17-8 (p. 211)) in which the vertical stress is reduced to -80 kPa.

Figure 17-26 (p. 214) shows the stress state for two different calculation phases, both at a
vertical stress level of 80 kPa. The plot in the left hand side shows the stress state after primary
loading. As expected the horizontal stress is found to be approximately -40 kPa (corresponding
to Ko " = 0.5). The plot in the right hand side shows the final situation after unloading down to
-80 kPa. In this case the horizontal stress is decreased from -320 kPa to approximately -220
kPa, (A o'y« = 100 kPa), i.e, much less than the decrease of the vertical stress (Ac',, = 560 kPa).
Thus, a situation where o 'y, is larger than o'y, is obtained.
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Figure 17-26: Stress states at vertical stress level of -80 kPa. Left, after
primary loading ¢ 'xx= 40 kPa. Right, after unloading from -640 kPa ¢ 'xx=
-220 kPac '~ 40 kPa. Right, after unloading from -640 kPa ¢ ',,= -220 kPa
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During sudden unloading in a one-dimensional compression test, the behaviour is purely elastic.
Hence, the ratio of the horizontal and vertical stress increments can be determined as:

J
Aoy, Uy
Aaz;y 1— vy,

(17-4)

It is easy to verify that the results correspond to Poisson's ratio v, = 0.15 as listed in Table 17-3

.204).

17.6 | Soft Soil model: Response in isotropic
compression test

In this section it will be demonstrated that the Soft Soil model obeys a logarithmic relationship
between the volumetric strain and the mean stress in isotropic compression. For this purpose
the test set up is simulated as that presented in Figure 17-1 (p. 191). The vertical load (A) and

the horizontal load (B) are simultaneously applied to the same level so that a fully isotropic stress
state occurs. The parameters of the Soft Soil model are chosen arbitrarily, but the values are
realistic for normally consolidated clay. The parameters are presented in Table 17-10 (p. 215).

Table 17-10: Soft Soil model parameters for isotropic compression test

Modified compression

index A 01
Modified swelling index K 0.02
Poisson's ratio Vur 015
Friction angle [0) 30°
Cohesion c 1.0 kPa
Normally consolidated Kg Ko &Ko "™ 0.5

From a stress-free state, the model is isotropically loaded to a mean stress of p' = 100 kPa,

after which the displacements are reset to zero. As a result, the material becomes 'normally
consolidated', i.e., the preconsolidation stress is equivalent to the current state-of-stress.

After that, the isotropic pressure is increased to p' = 1000 kPa. This loading path is denoted as
'primary loading'. Then, the sample is isotropically ' unloaded' to p'= 7100 kPa. Finally, the sample
is loaded up to p'= 10000 kPa. In the last loading path, the maximum preload of 1000 kPa is
exceeded. and hence, it consists of two parts: the part of the loading path for which p' <7000
kPa is referred to as 'reloading’, and the part of the loading path for p'> 71000 kPa consists of
further primary loading. The calculation phases are indicated in Table 17-11 (p. 215).

Table 17-11: Calculation phases for isotropic compression test on clay

Stage Initial stress Final stress
0 Initial situation - po =100 kPa
1 Primary loading pO =100 kPa p7 = 1000 kPa
2 Unloading p' =1000 kPa p? =100 kPa
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Stage Initial stress Final stress
3 Reloading p2 =100 kPa p3 = 1000 kPa
4 Primary loading p3 = 1000 kPa p4 = 10000 kPa

The computational results are presented in Figure 17-27 (p. 216), which shows the relation

between the vertical strain €,y and the vertical stress o'yy.
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Figure 17-27: Results of isotropic compression test

The latter quantity is plotted on a logarithmic scale. The plot shows two straight lines, which

indicates that there is indeed a logarithmic relation for loading and unloading. The vertical strain

is 1/3 of the volumetric strain, €,, and the vertical stress is equal to the mean stress, p'. The
volumetric strains obtained from the calculation are given in Table 17-12 (p. 216).

Table 17-12: Volumetric strains from various calculation phases

Phase Initial strain Final strain
0 e, % = 0.000
1 e, % =0.000 g, =-0235
2 g, =-0235 e,2=-0188
3 e,2=-0188 e,%=-0235
4 e,2=-0235 g, =-0.471

From these strains and corresponding stresses, the parameters A" andk  can be back-
calculated using Egn. 11-1 (p. 118) and Eqgn. 11-2 (p. 118) .

. el — g0
Phasel: A = — v v — 0.102
ase In(pt/p®) _ 1n(1000/100)
2 1
. — 188 — 0.2
Phase2: x' = — —v_ v _ 0188°0235 .,
In(p?/p') In(100,/1000)
3 _2 N
Phase3: 1" — Ev— &y _ 0.235 — 0.188 — 0.020
In(p3/p?) In(1000/100)
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4 .3 B
Phased:. \'_ _ Eo— € _ 0471-0235
In(p*/p®)  In(10000,/1000)

The back-calculated values correspond to the input values as given in Table 17-10 (p. 215).

Note that the Soft Soil model does not include time effects such as in the secondary
compression. Such behaviour is included in the Soft Soil Creep model.

17.7 | Hardening Soil model and Hardening
Soil model with small-strain stiffness:
Excavation in Berlin sand

In the previous example, the advantage of the Hardening Soil model's distinct loading and
unloading stiffness was highlighted. With those, the calculated excavation heave could be
reduced to a more realistic, but in most cases still too high value. In the Berlin excavation
example, now the further advantage of considering small-strain stiffness in the analysis is
demonstrated.

The working group 1.6 Numerical methods in Geotechnics of the German Geotechnical Society
(DGGT) has organised several comparative finite element studies (benchmarks). One of these
benchmark examples is the installation of a triple anchored deep excavation wall in Berlin sand.
The reference solution by Schweiger (2002) is used here as the starting point for the next
validation example: Both, the mesh shown in Figure 17-28 (p. 217), and the soil parameters
given in Table 17-13 (p. 217) are taken from this reference solution. However, the bottom

soil layer 3 defined by Schweiger (2002) is assigned the parameters of layer 2 in the HSsmall
analysis. In the reference solution this layer's only purpose is the simulation of small-strain
stiffness due to a lack of small-strain stiffness constitutive models back then.

0 «—— 30.00 —» 0.00
] NESERKREN 300 (GWT)

3 AR Excavation step 1 '4%0 N

= Sand (layer 1) E 7

| RS Excavation step 2 '990

— R 27° <
20 PN A o

] Excavation step 3 -14.35 20
N A ° S A1
3 Sand (layer 2) Excavation step 4  -16.80 & Qo
1 \v2
40 ' = 89, N2
3 -17.90 (GWT) A3
605 Hydraulic barrier -30,00 -32.00
1 v/
E 80 diaphragm wall
80% AnchorPrestressDistance [m} Length |
1 A1 768 kN 2.30 m 15cmz 19.80 m
E Sand (layer 3) A2  945kN 1.35m 15cmz 23.30m
1003 NV N[N\ A3 980kN 1.35m 15cmz 23.80m

R RN R E e L L R A AR R RN A LA AR Excavation and anchor detail (1:1000)
-20 0 20 40 60 80 100 120

Figure 17-28: Excavation in Berlin sand: plane strain mesh (left) and geometry detail (right)

Table 17-13: Hardening Soil model and HS small model parameters for the three sand layers in
the excavation project

Parameter Layer1 Layer 2 Layer 3 Unit
Unit weight
above/below 19 /20 19 /20 19 /20 kN/m>
phreatic level
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Parameter Layer 1 Layer 2 Layer 3 Unit

ref _
Eso™” (pref = 100 45000 75000 105000 KN/m?2
kPa)

ref _
Eur™ (pres = 100 45000 75000 105000 kN/m?
kPa)

ref _

Eced' " (Pref = 180000 300000 315000 kN/m?
100 kPa)

ref _
fg) (Pres = 100 168750 281250 NA KN/m?

a

Shear strain

\mathop{G}o " 0.0002 0.0002 NA -
(pref = 100 kPa)

Cohesion ¢ 1 1 1 kN/m?
Friction angle ¢ 35 38 38 °
Dilatancy angle ¢ 5 6 6 °
Poisson's ratio 0.2 0.2 0.2 )
Vur

Power m 0.55 0.55 0.55 -
Ko™ 0.43 0.38 0.38 -
Tensile strength 0 0 0 kN/m?
Failure ratio 0.9 0.9 0.9 -

Figure 17-29 (p. 219) shows results from the finite element calculation using the original
Hardening Soil model and the Hardening Soil model with small-strain stiffness. The small-strain
stiffness formulation in the Hardening Soil model with small-strain stiffness accumulates more
settlements right next to the wall, whereas the settlement trough is smaller. The triple anchored
retaining wall is deflected less when using the HSsmall model, almost fitting the measured
deflection. Calculated excavation heave at the end of excavation is shown in Figure 17-30 (p.
219) . Compared to the HS results, the heave which is due to elastic unloading, is roughly
halved when using the Hardening Soil model with small-strain stiffness.
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Figure 17-29: Hardening Soil model and Hardening Soil model with small-
strain stiffness predictions versus measured displacements after the final
excavation step. Left: Surface settlement trough. Right: Lateral wall deflection.

0 0.01 0.02 0.03 0.04

> Vertical heave [m]
-20 y;
Sectllon A-A [
i i
-40 :
A=
IS /
N 4 4€At -60
ZNERRN
SRR i
R KNSR /
LT -
f}“f ‘ﬁAg%%ugiﬁﬂng, 7 HS (reference)
"VW‘A"A"‘ ﬁé e—e—eHSsmall
AN -100 v

Figure 17-30: Vertical displacements in the excavation pit
at a distance of 10 m from the retaining wall (Section A-A)
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Structural Behaviour

18.1 Anchors

The elastic behaviour of an anchor involves only a relationship between axial force N and
displacement (elongation) u of the form:

= —_— 1_1
N=—-U (18-1)

The anchor stiffness EA is defined by the user based on the material stiffness E and cross
section A.

In case of elastoplastic behaviour of the anchor the maximum tension force is bound by Fpmax tens
and the maximum compression force is bound by Fqx comp-

18.2 2D Geogrids

The PLAXIS program allows for orthotropic behaviour of geogrid elements, which is defined
by the parameters EA; and EA,. The stiffnesses are defined by the user and are based on the

material tension stiffnesses (E;, E,) and the cross section areas (A7, A,) corresponding to the
local axes of the geogrid. Geogrid elements cannot sustain compression forces.

The relationship between the force and the strain in axisymmetric models is defined as:
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N _ EA; 0 €
[H] _[ 0 EAZ] LH] (18-2)

where H is the hoop force and € is the hoop strain. For plane strain model H = 0.

When plasticity is considered, the maximum tensile forces can be defined:

Np,1 The maximum force in 1-direction (in-plane). [KN/m]
The maximum force in 2-direction (out-of-plane,
Np,2 anisotropic behaviour). [kN/m]

A non-linear N- € diagram may be specified in case of elastoplasticity:

Ni- eps; The N - € diagram in 1-direction (in-plane).

N,- eps»> The N - ¢ diagram in 2-direction (out-of-plane, anisotropic behaviour).

A Visco-elastic (time-dependent) behaviour may be specified based on a visco-elastic
perfectly-plastic Kelvin-Voigt model in each direction. Parameters which are required for time-
dependent visco-elasticity are:

Elastic stiffness during initial(instantaneous) strain
EA . . SR
l,short increment in 1-direction (in-plane). [kN/m]
Elastic stiffness during initial(instantaneous) strain
EA2 short increment in 2-direction (out-of-plane, anisotropic [KN/m]
behaviour).
Elastic stiffness during (infinitely) long strain increment
EA110ng in 1-direction (in-plane). [kN/m]
EA Elastic stiffness during (infinitely) long strain increment [kN/m]
2/long in 1-direction (out-of-plane, anisotropic behaviour).
Np,1 Maximum force in 1-direction (in-plane). [kN/m]
The maximum force in 2-direction (out-of-plane,
Np,2 anisotropic behaviour). [kN/m]
Retardation time The '_ume where a linear extrapplatlon of the.mltlal creep [day]
rate intersects the long-term displacement line.

For more information about the determination of the parameters see the Reference Manual -
Chapter 6 - Material data sets for geogrids.

18.3 ' 2D plates

The PLAXIS 2D program allows for orthotropic elasto-plastic material behaviour in plate
elements. The elastic behaviour is defined by the following parameters:

EA, Axial stiffness. [KN/m]

EA, Stiffness in the out-of-plane direction. [KN/m]
El Bending stiffness [kNm2/m]
v Poisson's ratio [-]
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The material behaviour in plate elements is defined by the following relationship between strains
and stresses.

2G 2Gv

ON 1-v 1-v 0 EN
oy | =2 X 0 |]|e (18-3)
T 0 0 kG|L7Y
In which k is the shear correction factor, which is taken as 5/6. For isotropic material:
E,
G = — —_
2(1+v) (18-4)
For anisotropic plates, the following relationship between strains and stresses is used:
ON El 0 0 EN
o2 =0 Ey O €2 (18-5)
T 0 0 kG ¥

where E;=EA,/d and E;=EA,/d. Note that the Poisson's ratio (v) is assumed to be zero in
anisotropic case.

The material behaviour in plate elements is defined by the following relationship between
structural forces and strains:

N =FEA;¢ (18-6)

H = EA2€H (18_7)
kEA "

Q= m’)’ (18-8)

M = FElk (18-9)

The modified shear strain y* takes into account the shear strain y and some additional terms

in order to give a more accurate approximation of the problem. k is the shear correction factor,
which is taken as 5/6. This implies that the shear stiffness is determined from the assumption
that the plate has a rectangular cross section. In the case of modelling a solid wall, this will give
the correct shear deformation. However, in the case of steel profile elements, like sheet-pile
walls, the computed shear deformation may be too large. You can check this by judging the

value of deg, which can be computed as y/12EI/EA. For steel profile elements, d.q should be
at least of the order of a factor 10 times smaller than the length of the plate to ensure negligible
shear deformations.

When plasticity is considered, the maximum bending moment and maximum normal force can
be defined:

M, Maximum bending moment. [KNm/m]
Np,1 Maximum axial force (in-plane). [KN/m]
Np,2 Maximum axial force (out-of-plane). [KN/m]

The maximum bending moment is given in units of force times length per unit width. The
maximum axial force, Np, is specified in units of force per unit of width. When the combination of
a bending moment and an axial force occurs in a plate, then the actual bending moment or axial
force at which plasticity occurs is lower than respectively M, or Ny. The relationship between
M, and N, is visualised in Figure 18-1 (p. 223). The diamond shape represents the ultimate
combination of forces for which plasticity will occur. Force combinations inside the diamond will
result in elastic deformations only.
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By default the maximum moment is set to 110" units if the material type is set to elastic (the
default setting).

Bending moments and axial forces are calculated at the stress points of the beam elements.
When yield function is violated, stresses are redistributed according to the theory of plasticity,
so that the maxima are complied with. This will result in irreversible deformations. Output of
bending moments and axial forces is given in the nodes, which requires extrapolation of the
values at the stress points. Nodal forces are not checked against the maximum forces.

Np

N M

: + <1
Np1 M, M
M, M,
P N> <2 4
Np.2

Np

Figure 18-1: Combinations of maximum bending moment and axial force

When plasticity is defined employing an user-defined moment-curvature (M-k) diagram, the
bending behaviour of the plate is governed by the defined moment-curvature. The curvature, k,
is specified in the unit of length and the moment, M, in the unit of force times length per unit of
width in the out-of-plane direction. The M-k diagram is assumed to govern the plate's behaviour
in both positive and negative loading directions.

M

Mop

Elastic

Figure 18-2: M-k diagramk diagram

The first segment in the M-k diagram determines the plate's elastic bending stiffness El:
EI =M(1)/k(1) (18-10)
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Additional segments in the M-k diagram define the plate's non-linear elastoplastic behaviour.
The last defined M-value is assumed to be the maximum bending moment, M, at which the
plate fails. Elastic bending strains are calculated from the aforementioned E/ value, whereas
additional bending (following the defined M-k diagram) is assumed to be plastic, as long as the
loading is in the same direction. Upon unloading from an elastoplastic state, the behaviour is
initially elastic, but after significant unloading it may again generate plastic strains.

In the elastoplastic (M-k) plates, the axial force N is considered elastic and independent from the
bending moment M. The axial force influences the stresses and displacements of the element
but without affecting the bending moment. In the elastoplastic (M-«) plates, the M-k diagram is
assumed to be the only one governing the plate's flexural behaviour.

18.4 ' 2D Embedded beams

An embedded beam in PLAXIS 2D consists of plate elements with embedded interface elements
to describe the interaction with the soil at the pile skin and at the pile foot (bearing capacity).
The material parameters of the embedded beam distinguish between the parameters of the pile
and the parameters of the skin resistance and foot resistance. The plate elements can have an
elastic or an elastoplastic behaviour. In case plasticity can occur, the plate elements behave
accordingly to a 2D plate (Figure 18-3 (p. 225)).

The elastic behaviour is defined by the following parameters:

E Young's modulus in axial direction. [kN/mZ]

A Beam cross section area. [m2]
Moment of inertia against bending around the beam 4

I axis. [m’]

The material behaviour in plate elements is defined by the following relationship between strains
and stresses.

-0 el
where

ON = Normal stress

T = Shear stress

¢ - Shear modulus G = ﬁ

K = Shear correction factor taken as 5/6

€N = Normal strain

The material behaviour in plate elements is defined by the following relationship between
structural forces and strains:

N =FAen (18-12)
o MEA_.

B ED N (18-13)
M = EIx (18-14)
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The modified shear strain y* takes into account the shear strain y and some additional terms in
order to give a more accurate approximation of the problem.

The interaction of the pile with the soil at the skin of the pile is described by linear elastic
behaviour with a finite strength and is defined by the following parameter:

Maximum traction allowed at the skin of the embedded

beam (can vary along the pile) [kN/m]

Tmax

The constitutive equation at the skin of the pile is defined by (see Figure 18-3 (p. 225)):

t K, 07[u—u’
=17 . (18-15)
tn 0 K,||ul— uy
where
uP = Displacement of the pile
u® = Displacement of the soil
Ks = The elastic shear stiffness (against longitudinal (axial) displacement

differences) of the embedded interface elements and K, denotes the elastic
axial stiffness (against transverse (lateral) displacement differences) of the
embedded interface elements.

These values are calculated using the interface stiffness factors and the pile spacing defined by
the user:

K, = ISFgg Liiiil -
o (18-16)
Kn = ISFRN soil

Lspacing

Ks

Ts;max

K~

KFoot
Fbot;max

Figure 18-3: Stiffness of the embedded interface elements for piles
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Default interface stiffness factors are calculated based on the pile spacing (Lspacing ) in relation
to the pile diameter (Dgg):

Ls acin, 078
ISFps =25 (M) (18-17)
D,
Lspacing 07
ISFRry = 2.5(—> (18-18)
D.q
Lspacing —0.7
ISFgp = 25< ) (18-19)
eq

The normal stress t, remains elastic if the Lateral resistance option is set to Unlimited. An
elastoplastic behaviour is possible setting the Lateral resistance to Linear or Multi-linear.

For the shear stress in axial direction t5 to remain elastic it is given by:

(ts) < Trmaz (18-20)
For plastic behaviour the shear force {5 is given by:

(ts) = Tinaa (18-21)

The interaction of the pile with the soil at the foot of the pile is described by a linear elastic
perfectly plastic interface element. The strength of the base is described by the following
parameter:

Maximum force allowed at the foot of the embedded

beam. [kN]

Fmax

In addition, no tension forces are allowed. In order to ensure that a realistic pile bearing capacity
as specified can actually be reached, a zone in the soil surrounding the pile foot is identified
where any kind of soil plasticity is excluded (elastic zone; Figure 18-4 (p. 227)). The size of

this zone is determined by the embedded beam's equivalent radius R, (Reference Manual).

18 Structural Behaviour | 226



Embedded beam(row)

Elastic zone

Figure 18-4: Elastic zone surrounding the bottom of the pile (after Sluis, 2012)
The constitutive relationship at the foot of the pile and its failure criterion are defined by:
Ffoot = Kfoot (U?oot - U;OOt) < Fraz (18-22)

where

Koot = Stiffness of the spring which is defined in the same way as the stiffness of the
embedded interface elements:

Gsoi Re
K ot = ISFKF% (18-23)

In case of plastic behaviour, the foot force Fyy is given by:

Ffoot = Fmam (18—24)
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Hydraulic Models

19.1/ Van Genuchten model

A Soil Water Characteristic Curve (SWCC) is introduced to describe hydraulic parameters

of the groundwater flow in unsaturated zones (usually above the phreatic surface). The

SWCC describes the capacity of the soil to keep water at different stresses. There are many
models which describe the hydraulic behaviour of unsaturated soils. The most common in the
groundwater literature is the model proposed by van Genuchten (1980), which is used in PLAXIS.
The Van Genuchten function is a three-parameter equation and relates the saturation to the
pressure head y:

S(’l/l) - Sres + (Ssat - Sres)[l + (ga|'l/}|)gn]gc (19_1)
where
(U = _Pu
’Y?U
Pw = Suction pore stress.
Yw = Unit weight of the pore fluid.
Sres = A residual saturation which describes a part of the fluid that remains in the

pores even at high suction heads.
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Ssat

In general at saturated conditions the pores will not be completely filled with
water as air can get trapped and the saturation in this situation, Sgq, Will be

less than one. However, the default is Sgyt = 1.0

Ya = A fitting parameter which is related to the air entry value of the soil and has
to be measured for a specific material. It is in the unit of 7/L and is a positive
value.

9n = A fitting parameter which is a function of the rate of water extraction from the

soil once the air entry value has been exceeded. This parameter has to be
measured for a specific material.

9e = A fitting parameter which is used in the general Van Genuchten equation. In
PLAXIS the following assumption is made to convert the Van Genuchten to a
two-parameter equation ( Egn. 19-2 (p. 229) ).

ge = (1—_9,,) (19-2)
dn

The Van Genuchten relationship provides reasonable results for low and intermediate suctions.
For very high suction values, saturation remains at the residual saturation.

Figure 19-1 (p. 229) and Figure 19-2 (p. 230) show the effect of the parameters g, and g, on
the shape of the SWCC.

12
—.=1.0
— - 8.=10

- Ba=100

Saturation

1000

Suction (kPa)

Figure 19-1: Effect of the parameter g, on the SWCC
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Figure 19-2: Effect of the parameter g, on the SWCC

Relative permeability is related to the saturation via the effective saturation. The effective
saturation Sfr is expressed as:

S - Sres

Seff = 71 -
</ Ssat - Sres (19 3)
The relative permeability according to Van Genuchten now reads:
VN 2
( 9i1> (gg" ) 4
krer(S) = maz | (Sepp)? | 1— |1 — Sefg; ,107 (19-4)

g, is a fitting parameter and has to be measured for a specific material. Note that using the above
expressions, the relative permeability can be related to the suction pore pressure directly.

The derivative of the degree of saturation with respect to the suction pore pressure reads:

Pbu) _ (5,00 - Sm)[1 _g”] [gn(g_a>g" D <9nl>] [1 + (ga - p_W)g"] R

Opuw gn Yw Yo
Figure 19-3 (p. 231) and Figure 19-4 (p. 231) present the Van Genuchten relations for a

sandy material with parameters Sgq¢= 1.0, Sjes = 0.027, g4 = 2.24 m”’ ,g9,=00andg,=2.286
graphically.
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Figure 19-3: Van Genuchten suction-saturation permeability
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Figure 19-4: Van Genuchten suction-relative permeability

19.2 | Approximate Van Genuchten model

As an alternative, PLAXIS for flow analysis supports a linearised Van Genuchten model for
which the approximate Van Genuchten parameters can be derived. According to this concept
saturation relates to the pore pressure head as:
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1 ifyp=>0
S(W) =< 1+ 57 ifv, <¢ <0 (19-6)
0 if ¢ <y

The variable g is a material dependent pressure head which specifies the extent of the

unsaturated zone under hydrostatic conditions. Below this threshold value the saturation is
assumed to be zero. For saturated conditions the degree of saturation equals one.

The linearised Appoximate Van Genuchten relation between relative permeability and pressure
head is written as:

1 if¢yp=>0
kret () = { 1070 if b, < <0 (19-7)
1074 if ¢ <y

According to this formulation the permeability in the transition zone is described as a log-linear
relation of pressure head where () is the pressure head at which the relative permeability is

reduced to 707 . In the Approximate Van Genuchten model the permeability remains constant for
values of the pressure head higher than . Under saturated conditions the relative permeability

equals one and the effective permeability is equal to the saturated permeability which is
assumed to be constant.

The input parameters of the "approximate Van Genuchten model'" are derived from the classical
Van Genuchten model. These parameters are translated into approximately equivalent process
parameters for the numerically more robust linearised model. For {5 the translation is as follows:

_ 1
Sz/):fl.[)m - Ssat

(I (19-8)

The parameter  is set equal to the pressure head at which the relative permeability according

to Van Genuchten is 10 , with a lower limit of -0.5 m. Figure 19-5 (p. 233) presents the
functional relation between pressure and saturation according to the approximate Van
Genuchten model using Yy = .48 m. The corresponding pressure-relative saturation relation (g
= 1.15 mis given in Figure 19-6 (p. 233).
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Figure 19-6: Approximate Van Genuchten pressure-relative permeability
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Al

General symbols

Symbols

Symbol Name
A Cross section area
c Cohesion
csp Current stiffness parameter
C Correction factor for SPT value
Cq Creep index for secondary compression
c Compression index
r Ricompression index
s Swelling index
Cu . Sy Undrained shear-strength
d Thickness
D Disturbance factor
D¢ Elastic material matrix representing Hooke's law
Void ratio
E Young's modulus
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Symbol

Name
Eoed Oedometer modulus
f Yield function
fdens Densification factor
Tepost Post-liquefaction factor
g Plastic potential function
G Shear modulus
GSI Geological Strength Index
Gur Unloading/reloading shear modulus
I Moment of inertia
K®g Elastic bulk modulus factor
K G Elastic shear modulus factor
KP g

Plastic shear modulus factor

*
k 4
G,secondary

Secondary plastic shear modulus factor

K Bulk modulus
Ko Coefficient of lateral earth pressure (initial stress state)
Kne Coefficient of lateral earth pressure for
0 a normally consolidated stress state
me Power in stress-dependent relation for elastic bulk modulus
m; Intact rock parameter
ne Power in stress-dependent relation for elastic shear modulus
np Power in stress-dependent relation for plastic shear modulus
M Slope of critical state line in p'-q space
M Bending moment
Nrey Number of shear stress reversals
N Normal force
N1 60 Corrected SPT value
OCR overconsolidation ratio
Isotropic stress or mean stress, negative
p for pressure; positive for tension
Pw Pore pressure
Pp Isotropic pre-consolidation stress, negative for pressure
POP

Pre overburden pressure, positive for (over)pressure

Equivalent shear stress or deviatoric stress
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Symbol Name
Q Shear force
Ry¢ Failure ratio
lu,o'v Excess pore pressure ratio in terms of vertical effective stresses
lyp' Excess pore pressure ratio in terms of mean effective stresses
RD Relative density
s, Undrained active shear strength
& X u Undrained triaxial compressive shear strength
sPsS u Undrained direct simple shear strength
sP . Undrained passive shear strength
t Time
u Vector with displacement components
1% Unit weight
y Various types of shear strain
oy dip angle
oy dip direction
A Increment
c Vector with Cartesian strain components, normal
B components positive for extension; negative for compression
€q Deviatoric strain (invariant)
&y Volumetric strain, negative for compression; positive for extension
K Cam-Clay swelling index
Kk Modified swelling index
A Plastic multiplier
A Cam-Clay compression index
A Modified compression index
u’ Modified creep index
v Poisson's ratio
o Vector with Cartesian stress components, normal
o components positive for tension; negative for pressure
Oy Confining pressure at which ¢y = 0
Ogi Uni-axial compressive strength
Op Vertical pre-consolidation stress, negative for pressure
[0) Friction angle
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Symbol Name
Pey Costant volume friction angle
®mob Mobilised friction angle
Pp Peak friction angle
1} Dilatancy angle
Um Mobilised dilatancy angle
Umax Maximum dilatancy angle
x€ Denotes creep component
x€ Denotes elastic component
xP Denotes plastic component
ref Denotes reference value (related to a reference stress)
Xy Denotes undrained
Xur Denotes unloading and reloading
Xm Denotes mobilised

Concrete Model symbols

Model symbol Name
a Increase of g, with increase of p
f Yield stress
Fxxn Normalised strength
F Yield function
G Fracture energy
H Normalised hardening/softening
J Shotcrete strength class
ko Degree of concrete utilisation in compression
Leg Characteristic length of the finite element
S Power in time-dependent strength/stiffness relations
thydr Time of full curing
Yix Safety factor for strength
Ocr Creep factor
®Pmax Maximum friction angle
1} Dilatancy angle
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Model symbol Name
x< denotes creep
xS denotes shrinkage
X oo Denotes atimet = oo
Xog Denotes a value of cured concrete
X50 Denotes a time t when 50% of the phenomenon has occurred
Xcp Denotes peak in uniaxial compression
Xxf Denotes a uniaxial failure value
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Applicability of the material models

B.1/ Aplicability material models: Based on different
materials

Considering different materials:

Model |Concrete] Rock | Gravel | Sand Silt OC clay | NC clay |Peat(org)

Linear
Elastic C C
Model

Mohr-
Coulomb B B C C C C C C
model

Hardening
soil B B B B B
model

HS small
model

UBC3D-
PLM B* B* B*
model

246



Model

Concrete

Rock

Gravel

Sand

Silt

OC clay

NC clay

Peat(org)

Soft Soil
creep
model

A*

A*

Soft soil
model

A*

A*

Jointed
rock
model

A**

Modified
Cam-
Clay
model

NGI-ADP
model

A*

A*

A*

UDCAM-
S model

A*

A*

A*

Hoek-
Brown
model

A**

Concrete
model

A

A : The best standard model in PLAXIS for this application

B : Reasonable modelling

C : First order (crude) approximation

* 1 Soft Soil Creep model in case time-dependent behaviour is important; UBC3D-PLM model
for dynamics analysis of sandy soils involving liquefaction

* : NGI-ADP model for short-term analysis and UDCAM-S model for cyclic analysis, in case
only undrained strength is known

** » Jointed Rock model in case of anisotropy and stratification; Hoek-Brown model for rock in

general

Considering different types of applications(consider also type of soil!)

B.2 | Aplicability material models: Based on different
applications

Model | FOUn- | Exca- | o\ he fMbank- Slope | Dam |Offshore| Other
dation | vation ment

Linear

Elastic C C

model
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Model

Foun-
dation

Exca-
vation

Tunnel

Embank-
ment

Slope

Dam

Offshore

Other

Mohr-
Coulomb
model

C

C

Hardening
Soil
model

HS small
model

UBC3D-
PLM
model*

Soft Sail
Creep
model

Soft Soil
model

Jointed
Rock
model

Modified
Cam-
Clay
model

NGI-ADP
model

UDCAM-
S model*

Hoek-
Brown
model

Concrete

model

A

A

A

A

A

A : The best standard model in PLAXIS for this application

B : Reasonable modelling

C : First order (crude) approximation

* : UDCAM-S model for cyclic analysis, in case only undrained strength is known; UBC3D-
PLM model for dynamics analysis of sandy soils involving undrained cyclic loading

*: As an alternative PM4Sand is available as a user-defined soil model under [GSE]
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B.3 | Aplicability material models: Based on different
type of loading and material

Considering different types of loading and soils (consider also type of soil!):
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Modelling of embedded structures

C.1/ Applicability of modelling techniques for
embedded structures

In this appendix, an overview of the applicability of the different modelling techniques for
embedded structures is given. In addition to displacement differences and shear forces in axial
direction, the embedded structures can undergo transverse forces due to lateral displacements.
The lateral displacements can be induced by a transverse force applied at the top of the pile
(Pile head loading) or as a consequence of the transverse distributed load induced by the lateral
displacement field of the surrounding soil (Horizontal soil displacement).

. Lateral behaviour
Lateral behaviour
PLAXIS . . .
Axial behaviour . . Lateral soil
2D Pile head loading
movement
Approach Wa!l Pile row Slr!gle Pile row Slqgle Pile row Sln.gle
behaviour pile pile Pile
Volume B c _ _ _ _ _
elements
Plate A C - B - C -
Node
to node - C - - - - -
anchor
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. Lateral behaviour
Lateral behaviour
PLAXIS . . .
Axial behaviour . . Lateral soil
2D Pile head loading
movement
Approach Wa!l Pile row Slr!gle Pile row Slr!gle Pile row Sln.gle
behaviour pile pile Pile
embedded _ B c B _ B _
beam

A : The best modelling choice for the correspondent application

B : Reasonable modelling

C : First order (crude) approximation

- : Not recommended
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Fortran subroutines for User-defined
soil models

In this appendix, a listing is given of the subroutines and functions which are provided by PLAXIS
in libraries and source code in the User-defined soil model directory. These can be called by the

User_Mod subroutine:

D.1' Subroutines

Subroutine

Description

MZeroR(R, K)

To initialize K terms of double array R to zero.

MZerol( I, K)

To initialize K terms of integer array I to zero.

SetRVal(R, K, V)

To initialize K terms of double array R to V.

SetlVal( |, K, IV)

To initialize K terms of integer array I to IV.

CopylVec( 11,12, K)

To copy K values from integer array 11 to I12.

CopyRVec(R1, R2, K)

To copy K values from double array R1 to R2.

MulVec(V, F, n)

To multiply a vector V by a factor F, n values.
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Subroutine

Description

MatVec( xMat, im, Vec, n, VecR)

® Matrix (xMat)-vector(Vec) operation.

® First dimension of matrix is im; resulting vector is
VecR.

AddVec( Vecl, Vec2, R1, R2, n, VecR)

To add n terms of two vectors; result in VecR
® VecRi=R1l - Vecli + R2 - Vec2i

MatMat( xMat1, id1, xMat2, id2,
nR1,nC2, nC1, xMatR, idR)

* Matrix multiplication xMatRij = xMat1;, -xMat2;

® id1,id2, idR: first dimension of matrices

®* nR1 number of rows in xMat1l and resulting xMatR

® nC2 number of column in xMat2 and resulting xMatR
® nC1l number of columns in xMat2 =rows in xMat2

MatMatSq( n, xMat1, xMat2, xMatR )

* Matrix multiplication xMatRij = xMat1;, -xMat2;
® Fully filled square matrices with dimensions n

MatInvPiv( AOrig, B, n)

Matrix inversion of square matrices AOrig and B with
dimensions n.

®* AOrigis NOT destroyed, B contains inverse matrix
of AOrig.
®* Row-pivoting is used.

WriVal(io, C, V)

To write a double value V to file unit io (when io > 0).

® The value is preceded by the character string C.

WrilVi(io, C, 1)

® AsWriVal but for integer value I.

WriVec(io, C, V,n)

®* AsWriVal but for n values of double array V.

WrilVc(io, C, iV, n)

® AsWriVal but for n values of integer array iV

WriMat( io, C, V, nd, nr, nc)

® AsWriVal but for double matrix V. nd is first
dimension of V, nr and nc are the number of rows
and columns to print respectively.

PrnSig(iOpt, S, xN1, xN2, xN3, S1, S2,
S3,P,Q)

To determine principal stresses and (for 10pt=1)
principal directions.

® i0pt = 0 to obtain principal stresses without
directions.

® i0pt = 1to obtain principal stresses and directions.

® S array containing 6 stress components (XX, YY, ZZ,
XY, YZ, ZX).

® xN1, xN2, xN3 array containing 3 values of principal
normalised directions only when iOpt=1.

® 31, S2, S3 sorted principal stresses ( S1 < 52 < §3)

® P isotropic stress (negative for compression).

® () deviatoric stress.
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Subroutine

Description

CarSig( S1, S2, S3, xN1, xN2, xN3,
SNew )

To calculate Cartesian stresses from principal stresses

and principal directions.

® S1,S2, S3 principal stresses.

®* xN1, xN2, xN3 arrays containing principal directions
(from PrnSig).

®* SNew contains 6 stress components (XX, YY, ZZ,
XY, YZ, ZX).

CrossProd( xN1, xN2, xN3)

Cross product of vectors xN1 and xN2

SetVecLen( xN, n, xL)

To multiply the n components of vector xN such that
the length of xN becomes xL (for example to normalize
vector xN to unit length).

D.2 | Functions

Functions

Description

Logical Function LEqual( A, B, Eps))

Returns TRUE when two values A and B are almost
equal, FALSE otherwise.

* LEqual = |A — B| < Eps*(|A| + |B| + Eps)/2

Logical Function IsOArr( A, n)

Returns TRUE when all n values of real (double) array A
are zero, FALSE otherwise.

Logical Function IsOIArr( 1Arr, n)

Returns TRUE when all n values of integer array IArr
are zero, FALSE otherwise.

Double Precision Function DInProd( A,
B,n)

Returns the dot product of two vectors with length n
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Soil Models and License levels

E.1 Overview Soil Models and Licese Levels

In the table below, it is a summary of the different Soil Models Available in PLAXIS with their
required licence level. To know more about PLAXIS licencing please visit the General Information
Manual.

Table E-1: Available soil models in PLAXIS 2D

Licence Level

Soil Model
PLAXIS 2D PLAXIS 2D RLAXIS
Advanced [ADV] 2DUltimate [ULT]
Mohr-Coulomb/ o o o
Linear Elastic
Hoek & Brown
(rock behaviour) v v v
Jointed Rock v v v
(anisotropy)
Hardening Soil
(isotropic hardening) v v v
Hardening Soil u v v
(Isotropic hardening)
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Licence Level

Soil Model o PLAXIS 2D PLAXIS
Advanced [ADV] 2DUltimate [ULT]
The Hardening
Soil with small- v v v
strain stiffness
Modified Cam-Clay v v v
NGI-ADP (anisotropic
undrained v v v
shear strength)
Soft soil - v v
Soft Soil Creep - v v
Sekiguchi-Ohta - v v
UDCAM-S - v v
Concrete - v v
UBC3D-PLM - - v
User defined Soil Models (UDSM)
Barcelona Basic - v + [GSE] v + [GSE]
CASM - v + [GSE] v + [GSE]
Creep-SCLAY1S - v + [GSE] v + [GSE]
Fluid model - v + [GSE] v + [GSE]
Frozen and
Unfrozen Soil - v + [GSE] v + [GSE]
Generalized
Hardening Soil ) v + [GSE] v + [GSE]
Hoek & Brown
with softening ) v + [GSE] v + [GSE]
Hypoplastic
model with inter- - v + [GSE] v + [GSE]
granular strain
Isotropic Jointed Rock
with Mohr-Coulomb - v + [GSE] v + [GSE]
Failure Criterion
Masonry - v + [GSE] v + [GSE]
NorSand v + [GSE] v + [GSE]
N2PC-Salt - v + [GSE] v + [GSE]
OC-Clay - v + [GSE] v + [GSE]
PM4Sand - - v + [GSE]
PMA4Silt - - v + [GSE]
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Licence Level

Soil Model

PLAXIS 2D PLAXIS 2D RLAXIS
Advanced [ADV] 2DUltimate [ULT]

SHANSEP
Mohr Coulomb ) v + [GSE] v + [GSE]
SHANSEP NGI-ADP - v + [GSE] v + [GSE]
Swelling Rock Model - v + [GSE] v + [GSE]
Visco-elastic _ « + [GSE] « + [GSE]

perfectly plastic

© Note: For detailed information about the User Defined Soil Models please visit Bentley
Communities. Some user-defined soil models have been developed and are supported
by the PLAXIS team itself.
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