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1
Introduction

In this part of the manual some scientific background is given of the theories and numerical
methods on which the PLAXIS program is based. The manual contains chapters on deformation
theory, groundwater flow theory (PLAXIS 2D), consolidation theory, dynamics as well as the
corresponding finite element formulations and integration rules for the various types of elements
used in PLAXIS. In B Calculation Process (p. 69) a global calculation scheme is provided for a
plastic deformation analysis.

In addition to the specific information given in this part of the manual, more information on
backgrounds of theory and numerical methods can be found in the literature, as amongst others
referred to in Reference Manual. For detailed information on stresses, strains, constitutive
modelling and the types of soil models used in the PLAXIS program, the reader is referred to the
Material Models Manual.
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2
Deformation theory

In this chapter the basic equations for the static deformation of a soil body are formulated within
the framework of continuum mechanics. A restriction is made in the sense that deformations
are considered to be small. This enables a formulation with reference to the original undeformed
geometry. The continuum description is discretised according to the finite element method.

2.1  Basic equations of continuum
deformation

The static equilibrium of a continuum can be formulated as:

 (2–1)

This equation (Eqn. 2–1 (p. 5)) relates the spatial derivatives of the six stress components,
assembled in vector , to the three components of the body forces, assembled in vector .  is
the transpose of a differential operator, defined as:

 (2–2)

In addition to the equilibrium equation, the kinematic relation can be formulated as:

 (2–3)
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This equation expresses the six strain components, assembled in vector , as the spatial
derivatives of the three displacement components, assembled in vector , using the previously
defined differential operator . The link between  Eqn. 2–1 (p. 5)  and  Eqn. 2–3 (p. 5)  is
formed by a constitutive relation representing the material behaviour. Constitutive relations, i.e.
relations between rates of stress and strain, are extensively discussed in the Reference Manual.
The general relation is repeated here for completeness:

 (2–4)

The combination of  Eqn. 2–1 (p. 5) ,  Eqn. 2–3 (p. 5)  and  Eqn. 2–4 (p. 6)  would
lead to a second-order partial differential equation in the displacements .

However, instead of a direct combination, the equilibrium equation is reformulated in a weak
form according to Galerkin's variation principle:

 (2–5)

In this formulation  represents a kinematically admissible variation of displacements. Applying
Green's theorem for partial integration to the first term in  Eqn. 2–5 (p. 6)  leads to:

 (2–6)

This introduces a boundary integral in which the boundary traction appears. The three
components of the boundary traction are assembled in the vector .  Eqn. 2–6 (p. 6)  is
referred to as the virtual work equation.

The development of the stress state  can be regarded as an incremental process:

 (2–7)

In this relation  represents the actual state of stress which is unknown and  represents the
previous state of stress which is known. The stress increment  is the stress rate integrated
over a small time increment.

If  Eqn. 2–6 (p. 6)  is considered for the actual state , the unknown stresses  can be
eliminated using  Eqn. 2–7 (p. 6) :

 (2–8)

It should be noted that all quantities appearing in  Eqn. 2–1 (p. 5)  till  Eqn. 2–8 (p. 6)  are
functions of the position in the three-dimensional space.

2.2  Finite element discretisation
According to the finite element method a continuum is divided into a number of (volume)
elements. Each element consists of a number of nodes. Each node has a number of degrees
of freedom that correspond to discrete values of the unknowns in the boundary value problem
to be solved. In the present case of deformation theory the degrees of freedom correspond to
the displacement components. Within an element the displacement field  is obtained from the
discrete nodal values in a vector  using interpolation functions assembled in matrix :

 (2–9)

The interpolation functions in matrix  are often denoted as shape functions. Substitution of 
Eqn. 2–9 (p. 6)  in the kinematic relation  Eqn. 2–3 (p. 5)  gives:

 (2–10)
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In this relation  is the strain interpolation matrix, which contains the spatial derivatives of the
interpolation functions.  Eqn. 2–9 (p. 6)  and  Eqn. 2–10 (p. 6)  can be used in variational,
incremental and rate form as well.

Eqn. 2–8 (p. 6)  can now be reformulated in discretised form as:

 (2–11)

The discrete displacements can be placed outside the integral:

 (2–12)

Provided that  Eqn. 2–12 (p. 7)  holds for any kinematically admissible displacement variation
, the equation can be written as:

 (2–13)

The  Eqn. 2–13 (p. 7)  is the elaborated equilibrium condition in discretised form. The
first term on the right-hand side together with the second term represent the current external
force vector and the last term represents the internal reaction vector from the previous step. A
difference between the external force vector and the internal reaction vector should be balanced
by a stress increment .

The relation between stress increments and strain increments is usually non-linear. As a result,
strain increments can generally not be calculated directly, and global iterative procedures are
required to satisfy the equilibrium condition ( Eqn. 2–12 (p. 7) ) for all material points. Global
iterative procedures are described later in 2.4 Global iterative procedure (p. 8), but the
attention is first focused on the (local) integration of stresses.

2.3  Implicit integration of differential
plasticity models

The stress increments  are obtained by integration of the stress rates according to  Eqn. 2–7
(p. 6) . For differential plasticity models the stress increments can generally be written as:

 (2–14)

In this relation  represents the elastic material matrix for the current stress increment. The
strain increments  are obtained from the displacement increments  using the strain
interpolation matrix , similar to Eqn. 2–10 (p. 6).

For elastic material behaviour, the plastic strain increment   is zero. For plastic material
behaviour, the plastic strain increment can be written, according to Vermmer (1979), as:

 (2–15)

In this equation  is the increment of the plastic multiplier and  is a parameter indicating the
type of time integration. For  the integration is called explicit and for  the integration is
called implicit.

Vermeer (1979) has shown that the use of implicit integration ( ) has some major
advantages, as it overcomes the requirement to update the stress to the yield surface in the
case of a transition from elastic to elastoplastic behaviour. Moreover, it can be proven that
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implicit integration, under certain conditions, leads to a symmetric and positive differential
matrix , which has a positive influence on iterative procedures. Because of these major
advantages, restriction is made here to implicit integration and no attention is given to other
types of time integration.

Hence, for   Eqn. 2–15 (p. 7)  reduces to:

 (2–16)

Substitution of  Eqn. 2–16 (p. 8)  into  Eqn. 2–14 (p. 7)  and successively into  Eqn. 2–7
(p. 6)  gives:

 with:  (2–17)

In this relation  is an auxiliary stress vector, referred to as the elastic stresses or trial stresses,
which is the new stress state when considering purely linear elastic material behaviour.

The increment of the plastic multiplier , as used in Eqn. 2–17 (p. 8) , can be solved from
the condition that the new stress state has to satisfy the yield condition:

 (2–18)

For perfectly-plastic and linear hardening models the increment of the plastic multiplier can be
written as:

 (2–19)

where:

 (2–20)

The symbol  denotes the hardening parameter, PLAXIS which is zero for perfectly-plastic
models and constant for linear hardening models. In the latter case the new stress state can be
formulated as:

 (2–21)

The -brackets are referred to as McCauley brackets, which have the following convention:

For non-linear hardening models the increment of the plastic multiplier is obtained using a
Newton-type iterative procedure with convergence control.

2.4  Global iterative procedure
Substitution of the relationship between increments of stress and increments of strain,

, into the equilibrium equation ( Eqn. 2–13 (p. 7) ) leads to:

 (2–22)

In this equation  is a stiffness matrix,  is the incremental displacement vector,  is the
external force vector and  is the internal reaction vector. The superscript  refers to the step
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number. However, because the relation between stress increments and strain increments is
generally non-linear, the stiffness matrix cannot be formulated exactly beforehand. Hence,
a global iterative procedure is required to satisfy both the equilibrium condition and the
constitutive relation. The global iteration process can be written as:

 (2–23)

The superscript  refers to the iteration number.  is a vector containing sub-incremental
displacements, which contribute to the displacement increments of step  :

 (2–24)

where  is the number of iterations within step . The stiffness matrix , as used in  Eqn. 2–23
(p. 9) , represents the material behaviour in an approximated manner. The more accurate
the stiffness matrix, the fewer iterations are required to obtain equilibrium within a certain
tolerance.

In its simplest form  represents a linear-elastic response. In this case, the stiffness matrix can
be formulated as:

 (2–25)

where  is the elastic material matrix according to Hooke's law and  is the strain interpolation
matrix. The use of an elastic stiffness matrix gives a robust iterative procedure as long as the
material stiffness does not increase, even when using non-associated plasticity models. Special
techniques such as arc-length control (Riks, 1979), over-relaxation and extrapolation (Vermeer
& van Langen, 1989) can be used to improve the iteration process. Moreover, the automatic
step size procedure, as introduced by Van Langen & Vermeer (1990), can be used to improve
the practical applicability. For material models with linear behaviour in the elastic domain, such
as the standard Mohr-Coulomb model, the use of an elastic stiffness matrix is particularly
favourable, as the stiffness matrix needs only be formed and decomposed before the first
calculation step. This calculation procedure is summarised in B Calculation Process (p. 69).
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3
Groundwater flow theory

In this chapter we will review the theory of groundwater flow as used in PLAXIS. In addition to a
general description of groundwater flow, attention is focused on the finite element formulation.

3.1  Basic equations of flow

3.1.1   Transient flow
Flow in a porous medium can be described by Darcy's law which is expressed by the following
equation in three dimensions:

 (3–1)

Where

 (3–2)

, ,  and  are the specific discharge (fluid velocity), the tensor of permeability, the
acceleration vector due to gravity  Eqn. 3–3 (p. 11)  and the density of water, respectively.

 is the gradient of the water pore pressure which causes groundwater flow. The term  is
used as the flow is not affected by the gradient of the water pore pressure in vertical direction
when hydrostatic conditions are assumed.
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 (3–3)

In unsaturated soils the coefficient of permeability  can be related to the soil saturation as:

 (3–4)

where

 (3–5)

and  is the ratio of the permeability at a given saturation to the permeability in saturated state
.

3.1.2  Continuity equation
The mass concentration of the water in each elemental volume of the medium is equal to .
The parameters  and  are the porosity and the degree of saturation of the soil, respectively.
According to the mass conservation, the water outflow from the volume is equal to the changes
in the mass concentration. As the water outflow is equal to the divergence of the specific

discharge , the continuity equation has the form (Song, 1990):

 (3–6)

where the specific discharge  is defined as:

 (3–7)

By neglecting the deformations of solid particles and the gradients of the density of water
(Boussinesq's approximation), the continuity equation is simplified to:

 (3–8)

where

 (3–9)

For transient groundwater flow the displacements of solid particles are neglected. Therefore:

 (3–10)

For steady state flow ( ) the continuity condition applies:

 (3–11)

Eqn. 3–11 (p. 11)  expresses that there is no net inflow or outflow in an elementary area, as
illustrated in:
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Figure 3–1: Illustration of continuity condition

3.1.3  Hydraulic gradient
Hydraulic gradient or groundwater head gradient,  , is a vectorial variable, such that:

 (3–12)

 is defined as follows:

 (3–13)

For any particular direction:

 (3–14)

 (3–15)

Note that the minus sign does not explicitly appear where groundwater flow, , is directly
calculated from pore water pressure, , and gravity acceleration, , values, since both pore
water pressure and the gravity acceleration vector are negative by definition.

The value of hydraulic gradient is taken equal to 0 when the relative permeability, , at that
point is lower than 0.99. This pre-condition ensures that the hydraulic gradient is only defined
for saturated soil volumes.

3.2  Boundary Conditions
The following boundary conditions are available in PLAXIS:

3.2.1  Closed
This type of boundary conditions specifies a zero Darcy flux over the boundary as

 (3–16)

where  and  are the outward pointing normal vector components on the boundary.
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3.2.2  Inflow
A non-zero Darcy flux over a boundary is set by a prescribed recharge value  and reads:

 (3–17)

This indicates that the Darcy flux vector and the normal vector on the boundary are pointing in
opposite directions.

3.2.3  Outflow
For outflow boundary conditions the direction of the prescribed Darcy flux, , should equal the
direction of the normal on the boundary, i.e.:

 (3–18)

3.2.4  Head
For prescribed head boundaries the value of the head  (prescribed input value) is imposed as:

 (3–19)

Alternatively prescribed pressure conditions can be given. Overtopping conditions for example
can be formulated as prescribed pressure boundaries

 (3–20)

These conditions directly relate to a prescribed head boundary condition and are implemented
as such.

3.2.5  Infiltration
This type of boundary conditions poses a more complex mixed boundary condition. An inflow
value  may depend on time and as in nature the amount of inflow is limited by the capacity of
the soil. If the precipitation rate exceeds this capacity, ponding takes place at a depth  and
the boundary condition switches from inflow to prescribed head. As soon as the soil capacity
meets the infiltration rate the condition switches back.

 (3–21)

This boundary condition simulates evaporation for negative values of . The outflow boundary
condition is limited by a minimum head  to ensure numerical stability.

3.2.6  Seepage
The water line option generates phreatic/seepage conditions by default. An external head  is
prescribed on the part of the boundary beneath the water line, seepage or free conditions are
applied to the rest of the line. The phreatic/seepage condition reads

 (3–22)

The seepage condition only allows for outflow of groundwater at atmospheric pressure. For
unsaturated conditions at the boundary the boundary is closed.
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Alternatively a water line may generate a phreatic/closed condition if the upper part of the line is
replaced by closed conditions. This condition is written as

 (3–23)

The external head  may vary in a time dependent way, however the part that remains closed is
derived from the initial setting.

3.2.7  Infiltration well
Inside the domain wells are modelled as source terms, where  specifies the inflowing flux per
meter.

 (3–24)

As the source term in the governing equation simulates water flowing in the system, the source
term is positive for a recharge well.

3.2.8  Extraction well
A discharge rate  simulates an amount of water leaving the domain

 (3–25)

The source term in th e governing equation is negative for a discharge well.

3.2.9  Drain
Drains are handled as seepage boundaries. However, drains may be located inside the domain
as well. The condition is written as

 (3–26)

A drain permits water leaving the modelling domain at atmospheric pressure. The drain itself
does not generate a resistance against flow.

Initial conditions are generated as a steady state solution for a problem with a given set of
boundary conditions.

3.3  Finite element discretisation
The groundwater pore pressure in any position within an element can be expressed in terms of
nodal values:

 (3–27)

where  is the vector with interpolation functions. For more information on the finite element
theory please refer to Bathe & Koshgoftaar (1979), Zienkiewicz (1967). According to  Eqn. 3–1 (p.
10) , the specific discharge is based on the gradient of the groundwater pore pressure. This
gradient can be determined by means of the -matrix, which contains the spatial derivatives of
the interpolation functions, see the PLAXIS Scientific Manual. In the numerical formulation the
specific discharge, , is written as:

 (3–28)
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where:

 and  (3–29)

From the specific discharges in the integration points,  , the nodal discharges  can be
integrated according to:

 (3–30)

in which  is the transpose of the -matrix. The term  indicates integration over the volume
of the body.

Starting from the continuity equation  Eqn. 3–10 (p. 11)  and applying the Galerkin approach
and incorporating prescribed boundary conditions we obtain:

 (3–31)

where ,  and  are the permeability matrix, the compressibility matrix and the prescribed
recharges that are given by the boundary conditions, respectively:

 (3–32)

 (3–33)

 (3–34)

 is the outflow prescribed flux on the boundary. The term  indicates a surface integral.

In PLAXIS the bulk modulus of the pore fluid is taken automatically according to:

 (3–35)

where  has a default value of 0.495. The value can be modified in the input program on the
basis of Skempton's B-parameter. For material just switched on, the bulk modulus of the pore
fluid is neglected.

Due to the unsaturated zone the set of equations is highly non-linear and a Picard scheme is
used to solve the system of equations iteratively. The linear set is solved in incremental form
using an implicit time stepping schema. Application of this procedure to  Eqn. 3–31 (p. 15) 
yields:

 (3–36)

and  denote value of water pore pressure at the beginning of a step. The parameter  is the
time integration coefficient. In general the integration coefficient  can take values from 0 to 1. In
PLAXIS the fully implicit scheme of integration is used with .

For steady state flow the governing equation is:

 (3–37)
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3.4  Flow in interface elements
Interface elements are treated specially in groundwater calculations. The interface elements
have an active setting for the deformation calculation (soil-structure interaction) and an
independent setting for flow calculations. When the interface elements are active in flow, there
is a full coupling of the pore pressure degrees of freedom and the interface permeability is taken
into account. When the interface elements are inactive in flow, there is no flow from one side
of the interface element to the other (impermeable screen). In addition, options are available to
make interface elements semi-permeable or to use them as drain elements.

3.4 Flow in interface elements  |  16



4
Consolidation theory

In this chapter we will review the theory of consolidation as used in PLAXIS. In addition to a
general description of Biot's theory for coupled consolidation, attention is focused on the finite
element formulation. Moreover, a separate section is devoted to the use of advanced soil models
in a consolidation analysis (elastoplastic consolidation).

4.1  Basic equations of consolidation
The governing equations of consolidation as used in PLAXIS follow Biot's theory (Biot, 1956).
Darcy's law for fluid flow and elastic behaviour of the soil skeleton are also assumed. The
formulation is based on small strain theory. According to Terzaghi's principle, stresses are
divided into effective stresses and pore pressures:

 (4–1)

where:

  (4–2)

 is the vector with total stresses,  contains the effective stresses,  is the excess pore
pressure and  is a vector containing unity terms for normal stress components and zero terms
for the shear stress components. The steady state solution at the end of the consolidation
process is denoted as . Within PLAXIS  is defined as:

 (4–3)

where  is the pore pressure generated in the input program based on phreatic lines after
the use of the K0 procedure or Gravity loading.
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Note that within PLAXIS compressive stresses are considered to be negative; this applies to
effective stresses as well as to pore pressures. In fact it would be more appropriate to refer to

 and  as pore stresses, rather than pressures. However, the term pore pressure is
retained, although it is positive for tension.

The constitutive equation is written in incremental form. Denoting an effective stress increment
as  and a strain increment as , the constitutive equation is:

 (4–4)

where:

 (4–5)

and  represents the material stiffness matrix. For details on constitutive relations, see the
Material Models Manual.

4.2  Finite element discretisation
To apply a finite element approximation we use the standard notation:

 (4–6)

where  is the nodal displacement vector,  is the nodal excess pore pressure vector,  is the
continuous displacement vector within an element and  is the (excess) pore pressure. The
matrix  contains the interpolation functions and  is the strain interpolation matrix.

In general the interpolation functions for the displacements may be different from the
interpolation functions for the pore pressure. In PLAXIS, however, the same functions are used
for displacements and pore pressures.

Starting from the incremental equilibrium equation and applying the above finite element
approximation we obtain:

 (4–7)

with:

 (4–8)

where  is a body force due to self-weight and  represents the surface tractions. In general
the residual force vector   will be equal to zero, but solutions of previous load steps may have
been inaccurate. By adding the residual force vector the computational procedure becomes self-
correcting. The term dV indicates integration over the volume of the body considered and dS
indicates a surface integral.

Dividing the total stresses into pore pressure and effective stresses and introducing the
constitutive relationship gives the nodal equilibrium equation:

 (4–9)

where  is the stiffness matrix,  is the coupling matrix and  is the incremental load vector:

 (4–10)
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To formulate the flow problem, the continuity equation is adopted in the following form:

 (4–11)

where  is the permeability matrix:

 (4–12)

n is the porosity, Kw is the bulk modulus of the pore fluid and  γw is the unit weight of the pore
fluid. This continuity equation includes the sign convention that psteady and p are considered
positive for tension.

As the steady state solution is defined by the equation:

 (4–13)

the continuity equation takes the following form:

 (4–14)

Applying finite element discretisation using a Galerkin procedure and incorporating prescribed
boundary conditions we obtain:

 (4–15)

where:

 (4–16)

and  is a vector due to prescribed outflow at the boundary. However within PLAXIS it is not
possible to have boundaries with non-zero prescribed outflow. The boundary is either closed
(zero flux) or open (zero excess pore pressure). In reality the bulk modulus of water is very high
and so the compressibility of water can be neglected in comparison to the compressibility of the
soil skeleton.

In PLAXIS the bulk modulus of the pore fluid is taken automatically according to (also see
Reference Manual):

 (4–17)

Where  has a default value of 0.495. The value can be modified in the input program on the
basis of Skempton's B-parameter. For drained material and material just switched on, the bulk
modulus of the pore fluid is neglected.

The equilibrium and continuity equations may be compressed into a block matrix equation:

 (4–18)

A simple step-by-step integration procedure is used to solve this equation. Using the symbol  Δ
to denote finite increments, the integration gives:

 (4–19)
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where:

 (4–20)

and  and  denote values at the beginning of a time step. The parameter  α is the time
integration coefficient. In general the integration coefficient α can take values from 0 to 1. In
PLAXIS the fully implicit scheme of integration is used with α=1.

4.3  Elastoplastic consolidation
In general, when a non-linear material model is used, iterations are needed to arrive at the
correct solution. Due to plasticity or stress-dependent stiffness behaviour the equilibrium
equations are not necessarily satisfied using the technique described above. Therefore the
equilibrium equation is inspected here. Instead of  Eqn. 4–9 (p. 18)  the equilibrium equation
is written in sub-incremental form:

 (4–21)

where  is the global residual force vector. The total displacement increment   is the
summation of sub-increments  from all iterations in the current step:

 (4–22)

with:

 and  (4–23)

In the first iteration we consider , i.e. the stress at the beginning of the step. Successive
iterations are used on the current stresses that are computed from the appropriate constitutive
model.

4.4  Critical time step
For most numerical integration procedures, accuracy increases when the time step is reduced,
but for consolidation there is a threshold value. Below a particular time increment (critical time
step) the accuracy rapidly decreases. Care should be taken with time steps that are smaller than
the advised minimum time step. The critical time step is calculated as:

 (4–24)

where  is the time integration coefficient which is equal to 1 for fully implicit integration
scheme,  is a constant parameter which is determined for each types of element and   is the
height of the element used.  is the consolidation coefficient and is calculated as:

 (4–25)

where  is the unit weight of the pore fluid,  is the coefficient of permeability,  is the
drained bulk modulus of soil skeleton and  represents the compressibility of the fluid which is
defined as:

 (4–26)
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where  is the porosity,  is the degree of saturation,  is the suction pore pressure and  is
the elastic bulk

modulus of water. Therefore the critical time step can be derived as:

 (4–27)

For one dimensional consolidation (vertical flow) in fully saturated soil, the critical time step can
be simplified as:

 (4–28)

in which  is the oedometer modulus:

 (4–29)

 is Poisson's ratio and  is the elastic Young's modulus.

For two dimensional elements as used in PLAXIS 2D,  and  for 15-node triangle and
6-node triangle elements, respectively. Therefore, the critical time step for fully saturated soils
can be calculated by:

 (4–30)

 (4–31)

For three dimensional elements as used in PLAXIS 3D . Therefore, the critical time step for
fully saturated soils can be calculated by:

 (4–32)

Fine meshes allow for smaller time steps than coarse meshes. For unstructured meshes with
different element sizes or when dealing with different soil layers and thus different values of ,

 and , the above formula yields different values for the critical time step. To be on the safe
side, the time step should not be smaller than the maximum value of the critical time steps of
all individual elements. This overall critical time step is automatically adopted as the First time
step in a consolidation analysis. For an introduction to the critical time step concept, the reader
is referred to Vermmer & Verruijt (1981). Detailed information for various types of finite elements
is given by Song (1990).
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5
Dynamics

This chapter highlights some of the theoretical backgrounds of the dynamic module. The
chapter does not give a full theoretical description of the dynamic modelling. For a more detailed
description you are referred to the literature Zienkiewicz & Taylor (1991), Hughes (1987), Das
(1995), Kramer (1996), Haigh et al. (2005), Basabe & Sen (2007), Kelly et al. (1976) and Pradhan
et al (2004).

5.1  Basic equation dynamic behaviour
The basic equation for the time-dependent movement of a volume under the influence of a
(dynamic) load is:

 (5–1)

Here,  is the mass matrix,  is the displacement vector,  is the damping matrix,  is
the stiffness matrix and  is the load vector. The displacement, , the velocity, , and the
acceleration, , can vary with time. The last two terms in the  Eqn. 5–1 (p. 22)  ( )
correspond to the static deformation.

Here the theory is described on the bases of linear elasticity. However, in principle, all models
in PLAXIS can be used for dynamics analisis. The soil behaviour can be both drained and
undrained. In the latter case, the bulk stiffness of the groundwater is added to the stiffness
matrix , as is the case for the static calculation.

In the matrix , the mass of the materials (soil + water + any constructions) is taken into
account. In PLAXIS the mass matrix is implemented as a lumped matrix.
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The matrix  represents the material damping of the materials. In reality, material damping
is caused by friction or by irreversible deformations (plasticity or viscosity). With more
viscosity or more plasticity, more vibration energy can be dissipated. If elasticity is assumed,
damping can still be taken into account using the matrix . To determine the damping matrix,
extra parameters are required, which are difficult to determine from tests. In finite element
formulations,  is often formulated as a function of the mass and stiffness matrices (Rayleigh
damping) ( Zienkiewicz & Taylor, 1991; Hughes, 1987)) as:

 (5–2)

This limits the determination of the damping matrix to the Rayleigh coefficients  and . Here,
when the contribution of    is dominant (for example,  and ) more of the
low frequency vibrations are damped, and when the contribution of  is dominant (for example,

 and ) more of the high-frequency vibrations are damped. In the standard
setting of PLAXIS, .

5.2  Time integration
In the numerical implementation of dynamics, the formulation of the time integration constitutes
an important factor for the stability and accuracy of the calculation process. Explicit and implicit
integration are the two commonly used time integration schemes. The advantage of explicit
integration is that it is relatively simple to formulate. However, the disadvantage is that the
calculation process is not as robust and it imposes serious limitations on the time step. The
implicit method is more complicated, but it produces a more reliable (more stable) calculation
process and usually a more accurate solution (Sluys, 1992).

The implicit time integration scheme of Newmark is a frequently used method. With this method,
the displacement and the velocity at the point in time t+Δt are expressed respectively as:

 (5–3)

 (5–4)

In the above equations,  Δt is the time step. The coefficients  α and  β determine the accuracy
of the numerical time integration. They are not equal to the  α and β for the Rayleigh damping. In
order to obtain a stable solution, the following condition must apply:

 (5–5)

The user is advised to use the standard setting of PLAXIS, in which the Newmark scheme
with  α=0.25 and β=0.5 (average acceleration method) is utilised. Other combinations are also
possible, however.

5.2.1  Implementation of the integration scheme
Eqn. 5–3 (p. 23)  can also be written as:

 or as: (5–6)

where the coefficients  c0, ... ,  c7, can be expressed in the time step and in the integration
parameters  α and  β. In this way, the displacement, the velocity and the acceleration at the
end of the time step are expressed by those at the start of the time step and the displacement
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increment. With implicit time integration,  Eqn. 5–1 (p. 22)  must be obtained at the end of a
time step (t+Δt):

 (5–7)

This equation, combined with the expressions  Eqn. 5–6 (p. 23)  for the displacements,
velocities and accelerations at the end of the time step, produce:

 (5–8)

In this form, the system of equations for a dynamic analysis reasonably matches that of a static
analysis. The difference is that the 'stiffness matrix' contains extra terms for mass and damping
and that the right-hand term contains extra terms specifying the velocity and acceleration at the
start of the time step (time t).

5.2.2  Recommended maximum time step
Despite the advantages of the implicit integration, the time step used in the calculation is subject
to some limitations. If the time step is too large, the solution will display substantial deviations
and the calculated response will be unreliable. The maximum recommended time step depends
on the maximum frequency and the coarseness (fineness) of the finite element mesh. The
equation used for a single element is:

 (5–9)

where lmin is the minimum length between three nodes of an element and Vs is the shear wave
velocity of an element. In a finite element model, the recommended maximum time step is equal
to the minimum value of  Δt according to Eqn. 5–9 (p. 24) over all elements. In this way, the
time step is chosen to ensure that a wave during a single step does not move a distance larger
than the minimum dimension of one element in case of 2nd order elements and half an element
in case of 4th order elements.

5.2.3  Dynamic integration coefficients
The Newmark implicit time history integration scheme has been used in PLAXIS code to solve
the equilibrium equation (dynamics) of the system. This method requires the calculation of
integration constants or coefficients. The time step,  Δt is selected on the basis of the sampling
time of the input signal and the number of dynamic sub-steps necessary for the analysis. Once 
is fixed, the dynamic integration coefficients (c0, c1, c2, c3, c4, c5, c6 and c7) required for the
numerical evaluation of the effective or pseudo-stiffness matrix and subsequent computation of
the displacements, velocities and accelerations at the end of each time step may be calculated
as follows:
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 (5–10)

where,  α and  β are the Newmark parameters that can be determined to obtain the integration
accuracy and stability.

5.3  Model Boundaries
In the case of a static deformation analysis, prescribed boundary displacements are introduced
at the boundaries of a finite element model. The boundaries can be completely free, or fixities
can be applied in one or two directions. Particularly the vertical boundaries of a mesh are often
non-physical (synthetic) boundaries that have been chosen so that they do not influence the
deformation behaviour of the construction to be modelled. In other words: the boundaries are
'far away'. For dynamics calculations, the boundaries should in principle be much further away
than those for static calculations, because, otherwise, stress waves will be reflected leading to
distortions in the computed results. However, locating the boundaries far away requires many
extra elements and therefore a lot of extra memory and calculating time.

To counteract reflections and avoid spurious waves, various methods are used at the
boundaries, which include:
● Use of half-infinite elements (boundary elements).
● Adaptation of the material properties of elements at the boundary (low stiffness, high

viscosity).
● Use of viscous boundaries (dampers).
● Use of free-field and compliant base boundaries (boundary elements).

All of these methods have their advantages and disadvantages and are problem dependent. For
the implementation of dynamic effects in PLAXIS, the viscous boundaries are used for problems
where the dynamic source is inside the mesh and the free-field boundaries when the dynamic
source is applied as a boundary condition (e.g. earthquake motions).

5.3.1   Viscous boundaries
In opting for viscous boundaries, a damper is used instead of applying fixities in a certain
direction. The damper ensures that an increase in stress on the boundary is absorbed without
rebounding. The boundary then starts to move. The use of viscous boundaries in PLAXIS is
based on the method described by Lysmer & Kuhlmeyer, (1969). The normal and shear stress
components absorbed by a damper in x-direction are:

 (5–11)

where  ρ is the density of the materials, Vp and Vs are the pressure wave velocity and the
shear wave velocity respectively,  and  are the normal and shear particle velocities
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derived by time integration, C1 and C2 are relaxation coefficients to modify the effect of
the absorption. When pressure waves only strike the boundary perpendicular, relaxation is
redundant ( ).

In the presence of shear waves, the damping effect of the viscous boundaries is perfect. The
effect can be modified by adapting the second coefficient in particular. The experience gained
until now shows that the use of C1= 1 and  C2=1 results in a reasonable absorption of any waves
reaching the boundary, which is sufficient for practical applications.

5.3.2  Free-field and compliant base boundaries
Using free-field boundaries, the domain is reduced to the area of interest and the free field
motion is applied to the boundaries employing free-field elements. A free-field element consists
of a one-dimensional element (in 2D problems) coupled to the main grid by viscous dashpots
(Figure 5–1 (p. 26)). To describe the propagation of waves inside the free-field elements, the
same mechanical behaviour as the adjacent soil element in the main domain is used.

Figure 5–1: Free field elements

The free field motion is transferred from free-field elements to the main domain by applying
the equivalent forces according to  Eqn. 5–12 (p. 26) . In these equations, the effect of a
viscous boundary condition is also considered at the boundary of the main domain to absorb
the outgoing waves from the internal structures. The normal and shear stress components
transferred from the free-field element to the main domain, for a damper in x-direction, are:

 (5–12)

where  ρ is the density of the materials, Vp and Vs are the pressure wave velocity and the shear
wave velocity respectively (Materials Model Manual - Basic Parameters of the Mohr-Coulomb
model),  and  are the particle velocities in the main grid and in the free-field element
respectively, C1 and C2 are relaxation coefficients to modify the effect of the absorption. When
pressure waves only strike the boundary perpendicular, relaxation is redundant (C1= C2=1).

Free-field elements can be attached to the lateral boundaries of the main domain. If the base
cluster is considered, absorption and application of dynamic input can be done at the same
place at the bottom of the model with the compliant base boundaries (Joyner & Chen, 1975). The
equivalent stresses in an compliant base are given by:
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where  and   are the upward and downward particle velocities, which can be considered as
displacement in the compliant base element and the main domain, respectively. The compliant
base works correctly if the relaxation coefficients C1 and C2 are equal to 1. The reaction of the
dashpots is multiplied by a factor 2 since half of the input is absorbed by the viscous dashpots
and half is transferred to the main domain. This is the difference between the compliant base
and the free field boundary conditions.

5.4  Initial stresses and stress increments
By removing the boundary fixities during the transition from a static analysis to a dynamics
analysis, the boundary stresses also cease. This means that the boundary will start to move as
a result of initial stresses. To prevent this, the original boundary stress will be converted to an
initial (virtual) boundary velocity. When calculating the stress, the initial boundary velocity must
be subtracted from the real velocity:

 (5–14)

This initial velocity is calculated at the start of the dynamics analisis and is therefore based
purely on the original boundary stress (preceding calculation or initial stress state).

At present, situations can arise where a new load is applied at a certain location on the model
and is continuously present from that moment onward. Such a load should result in an increase
in the average boundary stress. If it involves a viscous boundary, the average incremental stress
cannot be absorbed. Instead, the boundary will start to move. In most situations, however,
there are also fixed (non-absorbent) boundaries elsewhere in the mesh – for example, on
the bottom. The bottom of the mesh, at the location of the transition from a non-rigid to a
hard (stiff) soil layer, is often chosen for this. Here, reflections also occur in reality, so that
such a bottom boundary in a dynamics analisis can simply be provided with standard (fixed)
peripheral conditions. In the above-mentioned case of an increased load on the model, that
increase will eventually have to be absorbed by the (fixed) bottom boundary – if necessary, after
redistributing the stresses.

5.5  Amplification of responses
Let there be an acceleration time history (of size N) defined by a set of accelerations (may be
other responses in form of velocities or displacements), [a1, a2, a3, ... , aN ] recorded at time
steps [ t1, t2, t3, ... , tN] with uniform sampling rate. On performing Fourier transform on the given
series, the time signature can be converted to frequency dependent Fourier spectra like [A1+iB1,
A2+iB2, A3+iB3, ... , AM+iBM ] against the frequency set of [ f1, f2, f3, ... , fN ], where M is defined
as follows:

 (5–15)

The power spectra of the response may subsequently be obtained as a set of [ ½( A1 
2 + B1 

2),
½( A2 2 + B2 2), ..., ½( AM 2 + BM 2)] against the frequency set of [ f1, f2, f3,..., fM ].
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5.6  Pseudo-spectral acceleration response
spectrum for a single-degree-of-freedom
system

Let a structure be idealized as a single-degree-of-freedom (SDOF) system. This SDOF structure
may be physically modelled as a combination of mass-spring-dashpot system attached to the
ground surface. The equation for this SDOF system may be written as:

 (5–16)

where, m is the mass of the structure, x is the lateral displacement of the structure, c represents
the viscous damping coefficient of the structure, k is the stiffness of the structure and  is
the horizontal acceleration time history at the ground surface at the base of the structure. The
expressions for the damping coefficient and the structural stiffness are given by:

 (5–17)

respectively.  ζs and  ω  denote respectively the damping ratio and natural frequency of
the structure. The natural frequency is the inverse of the natural time period. The pseudo-
acceleration, a is defined by the following equation.

 (5–18)

where  absolute peak response of a structure during the whole period of dynamic
loading

The acceleration time history obtained at the soil-structure interface (i.e. at soil surface as
obtained from PLAXIS is used as an input excitation to the structure). The above equation may
now be solved in time domain for a particular time period of a SDOF structure to obtain the
displacements of the structure at every time point and subsequently the absolute maximum
displacement response (i.e. |xmax|) of the structure can be found out from this displacement
time history (and hence its pseudo-spectral acceleration from  Eqn. 5–18 (p. 28) ) for the
whole duration of the time history. Thus, this equation may be repeatedly solved for different
natural time periods of the structure to plot its pseudo-acceleration response versus time period
giving rise to PSA plot. This would enable the users to perform seismic soil-structure interaction
analysis or seismic analysis or structures.

The stiffness ratio,  is the ratio of structural stiffness to soil stiffness defined by the following
equation (page 261 of Kramer, 1996)

 (5–19)

in which Vs is the shear wave velocity of the supporting soil medium and L is the height of
structure above the foundation.

5.7  Natural frequency of vibration of a soil
deposit

The natural frequency of vibration of a soil deposit may be calculated from the following
equation (page 261 of Kramer, 1996):
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 (5–20)

where,  is the nth  natural frequency of the soil deposit in Hz and n = 0,1,2,....

For n = 0, the first natural frequency,   (i.e. the fundamental frequency) of vibration of the soil
deposit of thickness H is given by

 (5–21)

5.8  Hydrodynamic pressure
The hydrodynamic pressures in a dam-reservoir system can be dealt with using the added mass
concept. The added mass approach introduced by Westergaard is widely used in practice and
simplifies the analysis procedure of the response of an incompressible dam-reservoir during
earthquakes. Westergaard's analytical solution was obtained for a rigid dam with a vertical
upstream face under a horizontal harmonic ground motion, where the fluid is treated as an
added mass to the body of the dam. Zangar extended Westergaard's work by considering the
sloping upstream face of the dam.

5.8.1  Added mass approach
The added mass is generally described as a matrix which models the interaction between water
pressure and the structure. It allows to investigate the dynamical response of the structure
without explicitly modelling the fluid motion and consequently reducing the modelling efforts.

Zangar derived experimentally an equation for the pressure distribution over the height of the
dam for different inclinations of the dam. Based on the assumptions of water incompressibility
and rigid structure, the expression for the hydrodynamic pressure distribution is given as:

 (5–22)

where

C = Pressure coefficient factor

a = Horizontal acceleration

= Density of water

h = Reservoir height

y = Distance of the considered point above the bottom of the reservoir

For different inclination angles of the upstream surface, Zangar derived a parabolic shape of the
mass or pressure distribution based on the experimental results. Accordingly, he obtained the
following expression for the pressure coefficient factor:

 (5–23)

The constant factor  is defined as the maximum occuring pressure coefficient for a specific
inclination. By considering water incompressible, the values of   can be calculated from

 (5–24)
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where the angle of inclination  is measured in degrees.

5.8.2  Implementation of Zangar's added mass
The added mass matrix of a finite element corresponding to the Zangar's approach is
obtained as follows. For an arbitrary segment of the face of the dam with an area of , the
corresponding normal inertia force due to the hydrodynamic pressure is written as:

 (5–25)

where:

 (5–26)

Notice here that the y parameter is measured from the bottom of the reservoir. By assuming
 to be the angle of the upstream face of the dam with the global x-axis, the inertia force

components in the x and y directions are obtained using the following transformation

 (5–27)

The total nodal inertia forces are computed by integrating over the upstream face as:

 (5–28)

where N is the matrix of shape functions and T the transformation matrix.

By considering the inertia force as the product of mass and acceleration, the added mass matrix
is obtained as:

 (5–29)

The computed added mass matrix in PLAXIS is always a consistent matrix regardless of the user
request for lumped mass matrix for soil and structural elements. For an inclined face of the dam,
applying horizontal acceleration generates vertical hydrodynamic forces but lumping the mass
matrix eliminates these vertical forces and therefore should be avoided.
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6
Element formulations

In this chapter the interpolation functions of the finite elements used in the PLAXIS program
are described. Each element consists of a number of nodes. Each node has a number of
degrees of freedom that correspond to discrete values of the unknowns in the boundary value
problem to be solved. In the case of deformation theory the degrees of freedom correspond
to the displacement components, whereas in the case of groundwater flow the degrees-of-
freedom are the groundwater heads. For consolidation problems degrees-of-freedom are both
displacement components and (excess) pore pressures. In addition to the interpolation functions
it is described which type of numerical integration over elements is used in the program.

6.1  Interpolation functions of point elements
Point elements are elements existing of only one single node. Hence, the displacement field of
the element  itself is only defined by the displacement field of this single node :

 (6–1)

with:

and

31



6.1.1  Structural elements

6.1.1.1  Fixed-end anchors
In PLAXIS fixed-end anchors are considered to be point elements. The contribution of this
element to the stiffness matrix can be derived from the traction the fixed-end anchor imposes on
a point in the geometry due to the displacement of this point (see  Eqn. 2–13 (p. 7) ). As a fixed-
end anchor has only an axial stiffness and no bending stiffness, it is more convenient to rotate
the global displacement field   to the displacement field  such that the first axis of the rotated
coordinate system coincides with the direction of the fixed-end anchor:

 (6–2)

where  denotes the rotation matrix. As only axial displacements are relevant, the element will
only have one degree of freedom in the rotated coordinate system. The traction in the rotated
coordinate system t* can be derived as:

 (6–3)

where

DS = the constitutive relationship of an anchor as defined in the Material Models
Manual.

Converting the traction in the rotated coordinate system to the traction in the global coordinate
system  by using the rotation matrix again and substituting  Eqn. 6–1 (p. 31)  gives:

 (6–4)

Substituting this equation in  Eqn. 2–13 (p. 7)  gives the element stiffness matrix of the fixed-end
anchor :

 (6–5)

In case of elastoplastic behaviour of the anchor the maximum tension force is bound by Fmax,tens
and the maximum compression force is bound by Fmax,comp .

6.2  Interpolation functions and numerical
integration of line elements

Within an element existing of more than one node the displacement field  (PLAXIS
2D) or  (PLAXIS 3D) and is obtained from the discrete nodal values in a vector

 using interpolation functions assembled in matrix :

Hence, interpolation functions  are used to interpolate values inside an element based on
known values in the nodes. Interpolation functions are also denoted as shape functions.

Let us first consider a line element. Line elements are the basis for line loads, beams and node-
to-node anchors. The extension of this theory to areas and volumes is given in the subsequent
sections. When the local position, ξ, of a point (usually a stress point or an integration point) is
known, one can write for a displacement component u:
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 (6–6)

where

vi = Nodal values

Ni(ξ) = Value of the shape function of node i at position  ξ

u(ξ) = Resulting value at position  ξ

n = Number of nodes per element

6.2.1  Interpolation functions of line elements
Interpolation functions or shape functions are derived in a local coordinate system. This has
several advantages like programming only one function per element type, a simple application of
numerical integration and allowing higher-order elements to have curved edges.

6.2.1.1  2-node line elements
In Figure 6–1 (p. 33), an example of a 2-node line element is given. In contrast to a 3-node
line element or a 5-node line element in the PLAXIS 2D program, this element is not compatible
with an area element in the PLAXIS 2D or PLAXIS 3D program or a volume element in the PLAXIS
3D program. The 2-node line elements are the basis for node-to-node anchors. The shape
functions Ni have the property that the function value is equal to unity at node i and zero at
the other node. For 2-node line elements the nodes are located at  ξ=-1 and  ξ=1. The shape
functions are given by:

 (6–8)

2-node line elements provide a first-order (linear) interpolation of displacements.

Figure 6–1: Shape functions for a 2-node line element

6.2.1.2  3-node line elements
In Figure 6–2 (p. 34), an example of a 3-node line element is given, which is compatible
with the side of a 6-node triangle in the PLAXIS 2D or PLAXIS 3D program or a 10-node volume
element in the PLAXIS 3D program, since these elements also have three nodes on a side. The
shape functions Ni have the property that the function value is equal to unity at node i and zero
at the other nodes. For 3-node line elements, where nodes 1, 2 and 3 are located at  ξ = -1, 0 and
1 respectively, the shape functions are given by:
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 (6–9)

3-node line elements provide a second-order (quadratic) interpolation of displacements. These
elements are the basis for line loads and beam elements.

Figure 6–2: Shape functions for a 3-node line element

6.2.1.3  5-node line elements
In Figure 6–3 (p. 35), an example of a 5-node line element is given, which is compatible with
the side of a 15-node triangle in the PLAXIS 2D program, since these elements also have five
nodes on a side. The shape functions Ni have the property that the function value is equal to
unity at node i and zero at the other nodes. For 5-node line elements, where nodes 1, 2, 3, 4 and
5 are located at  ξ = -1, -0.5, 0, 0.5 and 1 respectively, the shape functions are given by:

 (6–10)

5-node line elements provide a fourth-order (quartic) interpolation of displacements. These
elements are the basis for line loads and beam elements.
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Figure 6–3: Shape functions for a 5-node line element

6.2.2  Structural elements
Structural line elements in the PLAXIS program are based on the line elements as described in
the previous sections. However, there are some differences.

6.2.2.1  Node-to-node anchors
Node-to-node anchors are springs that are used to model ties between two points. A node-
to-node anchor consists of a 2-node element with both nodes shared with the elements the
node-to-node anchor is attached to. Therefore, the nodes have three d.o.f.s in the global
coordinate system. However, as a node-to-node anchor can only sustain normal forces, only
the displacement in the axial direction of the node-to-node anchor is relevant. Therefore it is
more convenient to rotate the global coordinate system to a coordinate system in which the first
axis coincides with the direction of the anchor. This rotated coordinate system is denoted as the
x*, y*, z* coordinate system and is similar to the (1, 2, 3) coordinate system used in the Material
Models Manual. In this rotated coordinate system, these elements have only one d.o.f. per node
(a displacement in axial direction).

The shape functions for these axial displacements are already given by  Eqn. 6–8 (p. 33) .
Using index notation, the axial displacement can now be defined as:

 (6–11)

where

= the nodal displacement in axial direction of node i.

The nodal displacements in the rotated coordinate system can be rotated to give the nodal
displacements in the global coordinate system:

 (6–12)

where the nodal displacement vector in the global coordinate system is denoted by
 in the PLAXIS 2D program and  in the PLAXIS 3D program

and  denotes the rotation matrix. For further elaboration into the element stiffness matrix see
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6.2.3 Derivatives of interpolation functions (p. 37) and 6.2.5 Calculation of element stiffness
matrix (p. 39).

6.2.2.2  Beam elements
The 3-node beam elements are used to describe semi-one-dimensional structural objects with
flexural rigidity. Beam elements are slightly different from 3-node line elements in the sense that
they have six degrees of freedom per node instead of three in the global coordinate system, i.e.
three translational d.o.f (ux, uy, uz ) and three rotational d.o.f (φx, φy, φz ).

The rotated coordinate system is denoted as the x*, y*, z* coordinate system and is similar to
the (1, 2, 3) coordinate system used in the Material Models Manual. The beam elements are
numerically integrated over their cross section using 4 (2x2) point Gaussian integration. In
addition, the beam elements are numerically integrated over their length using 4-point Gaussian
integration according to Table 6–1 (p. 39). Beam elements have only one local coordinate ( ξ).
The element provides a quadratic interpolation (3-node element) of the axial displacement (see 
Eqn. 6–9 (p. 34) ). Using index notation, the axial displacement can now be defined as:

 (6–13)

where  denotes the nodal displacement in axial direction of node i. As Mindlin's theory has
been adopted the shape functions for transverse displacements may be the same as for the
axial displacements (see  Eqn. 6–9 (p. 34)  and  Eqn. 6–10 (p. 34) ). Using index notation,
the transverse displacements can now be defined as:

 (6–14)

The local transverse displacements in any point is given by:

 (6–15)

The matrix  for transverse displacements is defined as:

 (6–16)

The local nodal transverse displacements and rotations of node i are given by :

 (6–17)

where  and  denote the nodal transverse displacements.

As the displacements and rotations are fully uncoupled according to Mindlin's theory, the shape
functions for the rotations may be different than the shape functions used for the displacements.
However, in PLAXIS the same functions are used. Using index notation, the rotations can now be
defined as:

 (6–18)

where the matrix  is defined by  Eqn. 6–16 (p. 36) . The local rotations in any point is
given by:

 (6–19)

The local nodal rotations of node i are given by  :

 (6–20)
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where  and  denote the nodal rotations. For further elaboration into the element stiffness
matrix see 6.2.3 Derivatives of interpolation functions (p. 37) and 6.2.5 Calculation of element
stiffness matrix (p. 39).

6.2.3  Derivatives of interpolation functions
To compute the element stiffness matrix first the derivatives of the interpolation functions should
be derived.

6.2.3.1  Node-to-node anchors
As node-to-node anchors can only sustain axial forces, only the axial strains are of interest: 
ε*=du*/dx*. Using the chain rule for differentiation gives:

 (6–21)

where (using index notation)

 (6–22)

and

 (6–23)

The parameter  denotes the coordinate of the nodes in the rotated coordinate system. In case
of 2-node line elements  Eqn. 6–23 (p. 37)  can be simplified to:

 (6–24)

where

L = length of the element in the global coordinate system.

Inserting  Eqn. 6–22 (p. 37) ,  Eqn. 6–24 (p. 37) ,    into  Eqn. 6–21 (p. 37)  will give:

 (6–25)

where the rotated strain interpolation function   is given by:

 (6–26)

Rotating the local nodal displacements back to the global coordinate system gives:

 (6–27)

Note that this strain interpolation function is still a function of the local coordinate ξ as the shape
functions Ni are a function of ξ.

6.2.3.2  Beam elements
In case of axial displacements in the rotated coordinate system, the strain interpolation matrix
for beams can be derived from  Eqn. 6–21 (p. 37)  till  Eqn. 6–23 (p. 37) . As node 2 of a 3-
node beam element is located in the middle of the element by default,  Eqn. 6–23 (p. 37)  can
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be simplified to  Eqn. 6–24 (p. 37) . So, the strain interpolation matrix in the global coordinate
system for the longitudinal displacements of beams is given by:

 (6–28)

To derive the shear forces in a Mindlin beam, a shear strain interpolation matrix is needed to
define the stiffness matrix. In contrast to the Bernoulli beam theory, the Mindlin beam theory
does not neglect the transverse shear deformations and thus the rotation ( γ) of a beam cannot
be calculated simply as a derivative of the transverse displacement:

 (6–29)

where

 (6–30)

and  is defined by  Eqn. 6–17 (p. 36) . Using the chain rule for differentiation ( Eqn. 6–21 (p.
37) ) and the assumption of  Eqn. 6–24 (p. 37) ,  Eqn. 6–28 (p. 38)  can be simplified to:

 (6–31)

Using  Eqn. 6–12 (p. 35)  to rotate local nodal transverse displacements and rotations to
global nodal displacements and rotations and inserting this equation in  Eqn. 6–31 (p. 38) 
gives:

 (6–32)

Note that this strain interpolation function is still a function of the local coordinate ξ as the shape
functions Ni are a function of ξ.

In case of bending moments, a curvature interpolation matrix is needed to define the stiffness
matrix. The curvature interpolation function describes the kinematic relationship between
curvatures and displacements:

 (6–33)

6.2.4  Numerical integration of line elements
To compute the element stiffness matrix first the derivatives of the interpolation functions should
be derived.

In order to obtain the integral over a certain line, the integral is numerically estimated as:

 (6–34)

where
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F( ξi) = value of the function F at position ξi

wi = weight factor for point i

A total of k sampling points is used. A method that is commonly used for numerical integration is
Gaussian integration, where the positions ξi and weights wi are chosen in a special way to obtain
high accuracy. For Gaussian-integration a polynomial function of degree 2k-1 can be integrated
exactly by using kpoints. The position and weight factors of the integration are given in Table 6–
1 (p. 39). Note that the sum of the weight factors is equal to 2, which is equal to the length of
the line in local coordinates. The types of integration used for the 2-node line elements and the
3-node line elements are shaded.

Table 6–1: Gaussian integration

Points ξi wi max. polyn. degree

1 point 0.000000... 2 1

2 points ±0.577350... 1 3

± 0.774596... 0.55555... (5/9)
3 points

0.000000... 0.88888... (8/9)
5

± 0.861136... 0.347854...
4 points

± 0.339981... 0.652145...
7

± 0.906179... 0.236926...

± 0.538469... 0.478628...5 points

0.000000... 0.568888...

9

6.2.5  Calculation of element stiffness matrix

6.2.5.1  Node-to-node anchors
The element stiffness matrix of a node-to-node anchor is calculated by the integral (see also 
Eqn. 2–25 (p. 9) ):

 (6–35)

where

Da = elastic constitutive relationship of the node-to-node anchor as discussed in the
Material Models Manual

As the strain interpolation matrix is still a function of the local coordinate  ξ it will make more
sense to solve the integral of  Eqn. 6–35 (p. 39)  in the local coordinate system. Applying the
change of variables theorem to change the integral to the local coordinate system gives:

 (6–36)

In case of a 2-node line element, dx*/dξ=L/2. This integral is estimated by numerical integration
as described in 6.2.4 Numerical integration of line elements (p. 38). In fact, the element
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stiffness matrix is composed of submatrices  where i and j are the local nodes. The process
of calculating the element stiffness matrix can be formulated as:

 (6–37)

In case of elastoplastic behaviour of the anchor the maximum tension force is bound by Fmax,tens
and the maximum compression force is bound by Fmax,comp (PLAXIS 3D).

6.2.5.2  Beam elements (PLAXIS 3D)
In case of axial forces, the element stiffness matrix is given by  Eqn. 6–35 (p. 39)  till  Eqn. 6–
37 (p. 40) . In case of shear forces the stiffness matrix of a beam is calculated by the integral:

 (6–38)

where  denotes the constitutive relationship of a beam in shearing (see Material Models
Manual):

 (6–39)

In case of bending moments the stiffness matrix of a beam is calculated by the integral:

 (6–40)

where  denotes the constitutive relationship of a beam in bending (see Material Models
Manual):

 (6–41)

To solve the integral of  Eqn. 6–36 (p. 39)  in the local coordinate system, the change of
variables theorem should be applied:

 (6–42)

In PLAXIS, for 3-node beam elements dx*/dξ=L/2. This integral is estimated by numerical
integration as described in 6.2.4 Numerical integration of line elements (p. 38). In fact, the
element stiffness matrix is composed of submatrices  where i and j are the local nodes. The
process of calculating the element stiffness matrix can be formulated as:

 (6–43)

6.3  Interpolation functions and numerical
integration of area elements

Areas and surfaces in PLAXIS 2D are formed by 6-node or 15-node triangular elements. For
the areas and surfaces in PLAXIS 3D only the 6-node triangular elements are available. The
interpolation functions and the type of integration of these elements are described in the
following subsections.
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6.3.1  Interpolation functions of area elements

6.3.1.1  6-node triangular elements
The 6-node triangles are one of the options for the basis for the soil elements in PLAXIS 2D and
the basis for plate elements and distributed loads in PLAXIS 3D.

For triangular elements there are two local coordinates ( ξ and  η). In addition we use an auxiliary
coordinate  ζ = 1-ξ-η. 6-node triangular elements provide a second-order interpolation of
displacements. The shape functions Ni have the property that the function value is equal to unity
at node i and zero at the other nodes. The shape functions can be written as (see the local node
numbering as shown in Figure 6–4 (p. 41)):

N1 = ζ(2ζ-1)

N2 = ξ(2ξ-1)

N3 = η(2η-1)

N4 = 4ζξ )

N5 = 4ξη

N6 = 4ηζ

Figure 6–4: Local numbering and positioning of nodes (•) and integration
points (x) of a 6-node triangular elementx) of a 6-node triangular element

6.3.1.2  15-node triangular elements
The 15-node triangles are one of the options for the basis for soil elements in PLAXIS 2D. For
triangular elements there are two local coordinates ( ξ and η). In addition we use an auxiliary
coordinate  ζ = 1-ξ-η. For 15-node triangles the shape functions can be written as (see the local
node numbering as shown in Figure 6–5 (p. 42)): .

N1 = ζ(4ζ-1)(4ζ-2)(4ζ-3)/6

N2 = ξ(4ξ-1)(4ξ-2)(4ξ-3)/6

N3 = η(4η-1)(4η-2)(4η-3)/6

N4 = 4ζξ(4ζ-1)(4ξ-1)

N5 = 4ξη(4ξ-1)(4η-1)

N6 = 4ηζ(4η-1)(4ζ-1)
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N7 = 8ξζ(4ζ-1)(4ζ-2)/3

N8 = 8ζξ(4ξ-1)(4ξ-2)/3

N9 = 8ηξ(4ξ-1)(4ξ-2)/3

N10 = 8ξη(4η-1)(4η-2)/3

N11 = 8ζη(4η-1)(4η-2)/3

N12 = 8ηζ(4ζ-1)(4ζ-2)/3

N13 = 32ηξζ(4ζ-1)

N14 = 32ηξζ(4ξ-1)

N15 = 32ηξζ(4η-1)

Figure 6–5: Local numbering and positioning of nodes of a 15-node triangular element

6.3.2  Structural elements
Structural area elements in the PLAXIS program, i.e. plates and interfaces are based on the area
elements as described in the previous sections. However there are some differences.

6.3.2.1  Plate elements
Plate elements are different from the 6-node triangles which have three degrees of freedom per
node. As the plate elements cannot sustain torsional moments, the plate elements have 6 d.o.f
per node , i.e.:
● one axial displacement ( );
● two transverse displacements (  and );
● three rotations ( ,  and ), where  is the drilling rotation (or a non-effective d.o.f with

an associated drilling stiffness to avoid zero-energy modes).

These elements are directly integrated over their cross section and numerically integrated using
3 point Gaussian integration. The position of the integration points is indicated in Figure 6–6 (p.
43) and corresponds with Table 6–3 (p. 44).
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Figure 6–6: Local numbering and positioning of nodes
(•) and integration points (x) of a 6-node plate triangle..

6.3.2.2  Interface elements
Differently from the plate elements, interface elements have pairs of nodes instead of
single nodes. The interface elements are numerically integrated using 6 point Gauss
integration. The distance between the two nodes of a node pair is zero. Each node has three
translational degrees of freedom (ux, uy, uz). As a result, interface elements allow for differential
displacements between the node pairs (slipping and gapping). The position and weight factors
of the integration points are given in Table 6–2 (p. 43).

Table 6–2: 6-Point Gaussian integration for 12-node triangular elements

Point ξi ηi wi

1 0.091576... 0.816848 0.109952

2 0.091576 0.091576 0.109952

3 0.816848 0.091576 0.109952

4 0.108103 0.445948 0.223382

5 0.445948 0.108103 0.223382

6 0.445948 0.445948 0.223382

For more information see Dunavant (1985).

6.3.3  Numerical integration of area elements
As for line elements, one can formulate the numerical integration over areas as:

 (6–44)

The PLAXIS program uses Gaussian integration within the area elements.

6.3.3.1  6-node triangular elements
For 6-node triangular elements the integration is based on 3 sample points (Figure 6–4 (p.
41)). The position and weight factors of the integration points are given in Table 6–3 (p.
44). Note that the sum of the weight factors is equal to 1.
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Table 6–3: 3-point Gaussian integration for 6-node triangular elements

Point ξi ηi wi

1 1/6 2/3 1/3

2 1/6 1/6 1/3

3 2/3 1/6 1/3

6.3.3.2  15-node triangular elements
For 15-node elements 12 sample points are used. The position and weight factors of the
integration points are given in Table 6–4 (p. 44). Note that, in contrast to the line elements,
the sum of the weight factors is equal to 1.

Table 6–4: 12-point Gaussian integration for 15-node triangular elements

Point ξi ηi ζi wi

1, 2 & 3 0.063089... 0.063089... 0.873821... 0.050845...

4...6 0.249286... 0.249286... 0.501426... 0.116786...

7...12 0.310352... 0.053145... 0.636502... 0.082851...

6.4  Interpolation functions and numerical
integration of volume elements

The soil volume in the PLAXIS program is modelled by means of 10-node tetrahedral elements.
The interpolation functions, their derivatives and the numerical integration of this type of
element are described in the following subsections.

6.4.1  10-node tetrahedral element
The 10-node tetrahedral elements are created in the 3D mesh procedure. This type of element
provides a second-order interpolation of displacements. For tetrahedral elements there are three
local coordinates (ξ, η and ζ). The shape functions Ni  have the property that the function value
is equal to unity at node i and zero at the other nodes. The shape functions of these 10-node
volume elements can be written as (see the local node numbering as shown in Figure 6–7 (p.
45)):

N1 = (1-ξ-η-ζ)(1-2ξ-2η-2ζ)

N2 = ζ(2ζ-1)

N3 = ξ(2ξ-1)

N4 = η(2η-1)

N5 = 4ζ(1-ξ-η-ζ)

N6 = 4ξζ

N7 = 4ξ(1-ξ-η-ζ)
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N8 = 4η(1-ξ-η-ζ)

N9 = 4ηζ

N10 = 4ξη

10

ξ

η

ζ

S1

S2

S3

S4

Figure 6–7: Local numbering and positioning of nodes (•)
and integration points (x) of a 10-node tetrahedral element

The soil elements have three degrees of freedom per node: ux, uy and uz. The shape function
matrix  can now be defined as:

 (6–45)

and the nodal displacement vector  is defined as:

 (6–46)

6.4.2  Derivatives of interpolation functions
In order to calculate Cartesian strain components from displacements, such as formulated in 
Eqn. 2–10 (p. 6) , derivatives need to be taken with respect to the global system of axes (x,y,z).

 (6–47)

where

 (6–48)

Within the elements, derivatives are calculated with respect to the local coordinate system ( ξ, η,
ζ).

The relationship between local and global derivatives involves the Jacobian J:
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 (6–49)

Or inversely:

 (6–50)

The local derivatives  ∂Ni/ ∂ξ, etc., can easily be derived from the element shape functions,
since the shape functions are formulated in local coordinates. The components of the Jacobian
are obtained from the differences in nodal coordinates. The inverse Jacobian J-1  is obtained by
numerically inverting J. The Cartesian strain components can now be calculated by summation
of all nodal contributions:

 (6–51)

where vi are the displacement components in node i.

6.4.3  Numerical integration of volume elements
As for line and areas, one can formulate the numerical integration over volumes as:

 (6–52)

The PLAXIS program uses Gaussian integration within the tetrahedral elements. The integration
is based on 4 sample points. The position and weight factors of the integration points are given
in Table 6–5 (p. 46). See Figure 6–7 (p. 45) for the local numbering of integration points.
Note that the sum of the weight factors is equal to 1/6.

Table 6–5: 4-point Gaussian integration for 10-node triangular elements

Point ξi ηi ζi wi

1 0.138197... 0.138197... 0.138197... 1/24

2 0.138197... 0.138197... 0.585410... 1/24

3 0.585410... 0.138197... 0.138197... 1/24

4 0.138197... 0.585410... 0.138197... 1/24

6.4.4  Calculation of element stiffness matrix
The element stiffness matrix, , is calculated by the integral (see also  Eqn. 2–25 (p. 9) ):
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 (6–53)

As it is more convenient to calculate the element stiffness matrix in the local coordinate system,
the change of variables theorem should be applied to change the integral to the local coordinate
system:

 (6–54)

where j denotes the determinant of the Jacobian.

The integral is estimated by numerical integration as described in 6.4.3 Numerical integration of
volume elements (p. 46). In fact, the element stiffness matrix is composed of submatrices 
where i and j are the local nodes. The process of calculating the element stiffness matrix can be
formulated as:

 (6–55)

In case of plastic deformations of the soil only the elastic part of the soil stiffness will be used in
the stiffness matrix whereas the plasticity is solved for iteratively.

6.5  Embedded beams
As special elements in PLAXIS embedded beams will be considered. Embedded beams are
based on the embedded beam approach by Sadek & Shahrour (2004). The embedded beam has
been developed to describe the interaction of a pile, anchor, or rock bolt with its surrounding soil
or rock. The interaction at the skin and at the foot is described by means of embedded interface
elements. The pile, anchor, or rock bolt is considered as a beam which can cross a volume
element at any place with any arbitrary orientation (Figure 6–8 (p. 47)). Due to the existence
of the beam element three extra nodes are introduced inside the volume element.

x'

y'

z'

y

x

z

Figure 6–8: Illustration of the embedded beam element denoted by the solid
line. The blank grey circles denote the virtual nodes of the soil element.
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6.5.1  Finite element discretisation
The finite element discretisation of the pile or rock bolt is similar to beam elements, as discussed
in 6.2.2.2 Beam elements (p. 36).

The finite element discretisation of the interaction with the soil will be discussed in this chapter.
Using the standard notation the displacement of the soil  and the displacement of the beam 
can be discretised as:

 (6–56)

where  and  are the matrices containing the interpolation functions of the soil elements
and the beam elements respectively (see 6.4.1 10-node tetrahedral element (p. 44) and
6.2.2.2 Beam elements (p. 36)) and  and  are the nodal displacement vectors of the soil
elements and the beam elements respectively.

6.5.2  Interaction at the skin
First, the interaction between the soil and the beam at the beam skin surface will be described
by embedded interface elements. These interface elements are based on 3-node line elements
with pairs of nodes instead of single nodes. One node of each pair belongs to the beam element,
whereas the other (virtual) node is a point in the 10-node tetrahedral element (Figure 6–8 (p.
47)). The interaction can be represented by a skin traction . The development of the skin
traction can be regarded as an incremental process:

 (6–57)

In this equation  denotes the initial skin traction and  denotes the skin traction
increment. The constitutive relation between the skin traction increment and the relative
displacement increment is formulated as:

 (6–58)

In this relation  denotes the material stiffness of the embedded interface element in the
global coordinate system. The increment in the relative displacement vector  is defined
as the difference in the increment of the soil displacement and the increment of the beam
displacement:

 (6–59)

where

 (6–60)

and

 (6–61)

Looking to the virtual work equation ( Eqn. 2–6 (p. 6) ) the traction increment at the beam skin
can be discretised as:

In this formulation the element stiffness matrix  represents the interaction between the
beam and the soil at the skin and consists of four parts:
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 (6–62)

The matrix  represents the contribution of the beam nodes to the interaction, the matrix
 represents the contribution of the soil nodes to the interaction and the matrices  and
 are the mixed terms:

 (6–63)

These integrals are numerically estimated using:

 (6–64)

However, instead of Gauss integration Newton-Cotes integration is used. In this method
the points ξi are chosen at the position of the nodes, see Table 6–6 (p. 49). The type of
integration used for the embedded interface elements is shaded. In case of plastic deformations
of the embedded interface elements only the elastic part of the interface stiffness will be used in
the stiffness matrix whereas the plasticity is solved for iteratively.

Table 6–6: Newton-Cotes integration

Nodes ξi wi

2 nodes ± 1 1

3 nodes ± 1, 0 1/3, 4/3

4 nodes ± 1,± 1/3 1/4, 3/4

5 nodes ± 1,± 1/2, 0 7/45, 32/45, 12/45

6.5.3  Interaction at the foot
The interaction of the embedded beam at the foot is described by an embedded interface
element. This interaction can be represented by a foot force vector . Like the development
of the skin traction the development of the foot force is an incremental process:

 (6–65)

In this equation  denotes the initial force and  denotes the force increment at the
foot. The constitutive relation between the skin traction increment and the relative displacement
increment is formulated as:

 (6–66)

In this relation  denotes the material stiffness matrix of the spring element at the foot of the
embedded beam in the global coordinate system. As for the skin interaction the force increment
at the foot of the beam can be discretised by means of the virtual work ( Eqn. 2–6 (p. 6) ), as:

 (6–67)

The stiffness matrix at the foot is represented by   and consists of four parts:
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 (6–68)

In this equation  represents the contribution of the beam nodes,  represents the
contribution from the soil nodes and  and  are the mixed terms:

 (6–69)

In case of plastic deformations of the embedded interface element only the elastic part of
the interface stiffness will be used in the stiffness matrix whereas the plasticity is solved for
iteratively.
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7
Convergence of non-linear

calculations in PLAXIS

Soil behaviour is usually not-linear which implies that either plasticity occurs or that the
associated material stiffness matrix is not linear (i.e stiffness can depend on: stiffness, strain,
suction, temperature etc). Therefore, the system of equations must be solved incrementally
using an iterative process (see B Calculation Process (p. 69) and C Understanding the
iterative convergence process (p. 71)). This process can be considered sufficiently accurate
if the global, local residual and integrated local error are less than a defined tolerated error.
Depending on the type of problem modelled, PLAXIS also considers additional criteria to enforce
that both globally and locally out-of-balance forces are close to zero.

PLAXIS solves different model global errors (out-of-balance) depending on the physical nature
of the problem, as shown below:

Physical problem Field Variable Conjugate flux
Soil stress analysis Displacement (u) Force (F)

Structural stress analysis Rotation (Ф) Moment (M)

Groundwater flow analysis Pore water pressure (p) GW Flow (qGW)

In general, the global error should always be less than a tolerated error:
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Note:
● The tolerated error can be provided by the user, PLAXIS usually uses a default

value of 0.01 or 1%. In PLAXIS, the tolerated error for each criterion checked upon is
calculated based on the global error.

● Coupled problems require to fulfill the convergence criteria for each field
independently except for consolidation analysis, for which only soil stress and
eventually structural stresses if structural elements have been activated in a
consolidation phase.

Due to the high non-linearity nature of the physical problems modelled, the obtention of
accurate non-linear solutions require not only the consideration of global criteria but also
additional local convergence criteria that will be presented in the following sections.

7.1  Convergence criteria for deformation
analysis

The criteria evaluated to satisfy the convergence of finite element solutions in deformation
analysis are divided in three main categories Global error checking,Local error checking, and
Integrated local error.. The convergence criteria for deformation analysis are applicable for the
following PLAXIS analyses:
● Plastic analysis
● Consolidation analysis
● Dynamic analysis
● Safety analysis
● Fully coupled analysis (deformation component)

Also, as an overview, the global and local error checking criteria for deformation are subdivided
as follows:

1. Global error criteria
● Check on force residuals
● Check on moment residuals

2. Local error criteria
● Inaccurate plastic points for soil elements
● Inaccurate plastic points for interface elements
● Inaccurate plastic points for beams
● Inaccurate plastic points for embedded beams
● Inaccurate plastic points for plates
● Inaccurate plastic points for anchors
● Inaccurate plastic points for geogrids

3. Integrated (or total) local error criteria
● Accuracy in the plastic zone
● Accuracy for embedded beams
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7.1.1  Global error criteria

7.1.1.1  Check on force residuals
A global error indicator for nodal forces is systematically calculated with the consideration of the
total number of degrees of freedom:

 (7–1)

where

= Quadratic norm

And CSP (Current Stiffness Parameter) is defined as:

 (7–2)

where

Hint: In PLAXIS the ToleratedError is set by default as 0.01.

7.1.1.2  Check on moment residuals
A global error indicator for moment in structural elements is calculated with respect to Moment
for structural elements having rotational degrees of freedom (dof).

 (7–3)

= Infinite norm.

= Moment contribution of each external force component.

The reference moment  is computed as follows:

 (7–4)

The convergence criteria for moment reads:

By default:
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Note:  This criterium only applies to structural elements with rotational degrees of
freedom.

7.1.2  Local error criteria
PLAXIS also enforces several local convergence checks, where local error indicators are
determined mainly based on the information derived from plastic points .

A point is defined as plastically inaccurate if:

where the PlasticLocalError is calculated differently depending on the type of elements. This
concept is considered for:
● soil elements
● interface elements - including node-to-node interface of embedded beam.  (inaccurate

plastic points are counted separately for soil interface and embedded beam interfaces)

Convergence is satisfied if:

and

Hint:

By default:

 and
 are set to 0.1

Note:
● The criteria checks should be satisfied for each independent counting.
● Only inaccurate plastic points for soil and interface are being reported in the

calculation progress window.

In PLAXIS 3D additional independent inaccurate plastic points counting are also considered for
the following structural elements:
● Beams
● Plates
● Anchors
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● Geotextiles

7.1.2.1  Inaccurate plastic points for soil elements
For soil elements, PLAXIS calculates the following quantities (or values) for each stress point:

 (7–5)

where (see Figure 7–1 (p. 55)):

 (7–6)

The equilibrium stress is calculated based on the linearized soil behaviour at FE model level
whereas the constitutive stress is the one computed by consideration of the real soil constitutive
behaviour at stress point.

Soil plastic stress points j are inaccurate if:

By default:

f(σ0)

δε1

f(σeq,1) f(σeq,2)
f(σeq,3)

f(σc,1)
f(σc,2)

f(σc,3)

Δu

f

Current 
step

Iteraons

δε2 δε3
Δε1
Δε2
Δε3

Figure 7–1: Equilibrium and constitutive stress concept

In PLAXIS 3D convergence check on number of inaccurate soil plastic points are skipped if:

7.1.2.2  Inaccurate plastic points for interfaces
For interface elements, PLAXIS also calculates the following quantity for each stress point:

 (7–7)
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Interface plastic points j are inaccurate if:

By default:

Note:
● Convergence checks on number of inaccurate interface plastic points are skipped if:

7.1.2.3  Inaccurate plastic points for beams
For beam elements, PLAXIS calculates the following error for each stress point:

 (7–8)

Beam plastic points j are inaccurate if:

By default:

7.1.2.4  Inaccurate plastic points for plates
For plate elements, PLAXIS 3D calculates the following for each stress point:

 (7–9)

Plate plastic points j are inaccurate if:

BY default:

7.1.2.5  Inaccurate plastic points for anchors
For anchor elements, PLAXIS 3D calculates the following for each stress point:

 (7–10)

Anchor plastic points j are inaccurate if:

BY default:
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7.1.2.6  Inaccurate plastic points for geogrids
For geogrid elements, PLAXIS 3D calculates the local error quantities for each stress point. Local
error calculation depends here whether the material is defined as isotropic.

 (7–11)

or anisotropic:

 (7–12)

 (7–13)

Geogrid plastic points j are inaccurate if:

By default:

In PLAXIS 3D convergence check on number of inaccurate geogrid plastic points are ignored if:

7.1.2.7  Accuracy for embedded beams
For embedded beams additional convergence criteria are considered to check the accuracy of
couplings springs (or special interfaces).

In PLAXIS, an embedded beam error is computed for each individual embedded beam element p
as:

 (7–14)

where:

 (7–15)

The concept of constitutive and equivalent forces for Ffoot,c, Ffoot,eqand Tskin is also considered
in the same fashion as for stress in soil (Figure 7–1 (p. 55)). The equilibrium forces are
calculated based on the linearized pile tip/skin behaviour whereas the constitutive forces are
the ones computed by consideration of real constitutive behaviour of coupling springs along
embedded beam length and at embedded beam tip.

This way inaccurate 3D embedded beams could be identified when:

By default:

7 Convergence of non-linear calculations in PLAXIS   |  57



The convergence criteria are relatively strict in PLAXIS 3D as no inaccurate embedded beam are
allowed which can be expressed as:

7.1.3  Integrated local error - Accuracy in the plastic
zone

7.1.3.1  Accuracy in the plastic zone
The plastic global error also called the integrated local error is defined as:

 (7–16)

where PlasticLocalErrorj has been defined in 7.1.2 Local error criteria (p. 54).

Converge is satisfied if:

The plastic error is calculated in PLAXIS 3D only for:

1. Soil elements for plastic points only with

2. Interfaces

3. Anchors

4. Geogrids

Unless:

7.2  Convergence criteria for flow analysis
The convergence criteria for flow analysis are applicable for the following PLAXIS analyses:
● Steady state flow.
● Transient flow.
● Fully coupled analysis.

As an overview of the PLAXIS convergence criteria for flow analysis are presented as follows:
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1. Global error criteria
● Flow error check
● Change of heat storage for thermal flow calculation check
● Unsaturated behaviour convergence checks for groundwater flow analysis

2. Local error indicators for groundwater flow calculation
● Inaccurate nodes for boundary conditions

○ Inaccurate seepage nodes
○ Inaccurate well (extraction) nodes
○ Inaccurate drain nodes
○ Inaccurate ponding nodes

● Maximum allowable number of iterations for checking status change.

3. Special case: Steady-state calculation criteria
● Local groundwater flow error
● Average pore pressure change
● Maximum pore pressure change
● Inaccurate nodes for specific boundary conditions

7.2.1  Global error criteria

7.2.1.1  Flow error check
A global error indicator for nodal flux is systematically calculated with the consideration of the
total number of degrees of freedom:

 (7–17)

Note: Fluxes are computed differently in groundwater flow than in heat flow (Darcy flux
GWFlowError vs heat flux ThFlowErr).

Convergence is satisfied if:

Hint:  TotalGlobalFlowError is by default set to 0.01. This condition is enforced for each
(pseudo) time step.

7.2.1.2  Unsaturated behaviour convergence check
In case of unsaturated behavior in groundwater flow analysis, additional checks are being
performed as the hydraulic conductivity and storativity. Matrices are computed at the beginning
of each time step assuming particular values for the degree-of-saturation and relative
permeability. A time step is judged valid if:
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and

where:

 (7–18)

and

 (7–19)

In PLAXIS, it is considered:

Some additional checks are also being considered to prevent excessive changes of the relative
permeability and/or degree of saturation in the unsaturated zone:

and

with

If excessive changes of degree-of-saturation or relative permeability are being detected, then a
new step attempt will be taken with a smaller time step size (downscaling factor is 1.5)

If the resulting changes of degree-of-saturation and/or relative permeabilities after the step size
increase leads to:

and

Then the upscaling is ignored, and the step size is scaled back to its previous value.

7.2.2  Local error criteria
As for deformation analysis, flow analysis in PLAXIS also enforces additional local convergence
check. Those are related to monitoring inaccurate nodes for specific boundary conditions for
groundwater flow calculation.

7.2.2.1  Inaccurate nodes for boundary conditions
1. Inaccurate seepage nodes:

Seepage nodes can be open or closed. If water wants to flow out, the pore pressure should
be zero. If the water tries to flow in, the node should be closed. In PLAXIS, a seepage node
which change status between two consecutive time steps is set as inaccurate.

The following convergence criteria is then enforced:
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Hint:

2. Inaccurate well (extraction) nodes:
If the water head in the well nodes goes below minimum specified head and if the active pore
pressure in the same node is positive, then the pore pressure in the well node is set to Pmax. A
well node which change status between two consecutive time steps is set as inaccurate. The
corresponding convergence criteria on inaccurate well nodes reads:

3. Inaccurate drain nodes:
If inflow is being detected in a drain node then it is switched to closed node. A drain node
which change status between two consecutive time steps is set as inaccurate.

The corresponding convergence criteria on inaccurate drain nodes reads:

4. Inaccurate ponding nodes:
If the head to get prescribed inflow is exceeded the nodes BC is changed to prescribed head.
A well node which change status between two consecutive time steps is set as inaccurate.

The corresponding convergence criteria on inaccurate drain nodes reads:

where:

Hint:

7.2.2.2  Maximum allowable number of iterations
The check on node status for each of the boundary condition types is done over a Maximum
allowable number of iterations. Beyond this, the boundary conditions status check will be
ignored. The maximum allowable number of iterations for checking status change are:
● For seepage nodes: 10
● For drain nodes: 10
● For well nodes: 10
● For ponding nodes: 2

7.2.3  Special case: Steady-state calculation criteria
A steady state calculation is also solved using an implicit time stepping scheme (pseudo time
step). For each pseudo-time step, the global error indicator for nodal flux must satisfied the
global flow error convergence criteria as given in 7.2.1.1 Flow error check (p. 59).
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Hint:
● TolerGlobalFlowError is internally set to 0.01 for steady state flow analysis and cannot

be explicitly set by user.

For steady state groundwater flow calculation, the same convergence criteria as considered in
transient analysis with respect to unsaturated behavior are also being enforced (see paragraph
3.2.1.3). Moreover, additional specific flow checks are being considered and which are only
considered for steady state groundwater flow analysis.

7.2.3.1  Local groundwater flow check
An additional condition on flow error at local level should be satisfied during steady-state flow
analysis:

where:

 (7–20)

where:

7.2.3.2  Average pore pressure change
The following steady state regime condition should be satisfied as well:

where:

 (7–21)

Hint:

Note:  New and old subscripts refer to two consecutive pseudo-time steps.

7.2.3.3  Maximum pore pressure change
The number of inaccurate pore pressure nodes are counted during a steady state groundwater
flow analysis. A flow node i is inaccurate if:
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 (7–22)

By default:

Note: A check on the maximum pore pressure change (the most inaccurate pore
pressure node) will be enforced.

 (7–23)

By default:

However, if the number of steps is larger than 10 and either:

1. The number of inaccurate pore pressure nodes nSSErrNod satisfies:

Hint:  ToleratedInaccurateNodesPercentageSSFlow = 0.01 (default).

2. or the global flow error GlobalFlowError satisfies:

Then the criteria on maximum pore pressure change is disregarded.

7.2.3.4  Inaccurate nodes for boundary conditions
Inaccurate nodes are also considered during steady state groundwater flow calculation using
the same definition as given in 7.2.2.1 Inaccurate nodes for boundary conditions (p. 60). Only
this specificity of steady state calculation with respect to transient flow is in the definition of the
maximum allowable number of iterations for checking status change.

For steady-state calculation, the maximum allowable numbers of iterations for checking status
change are reduced and equal to:
● For seepage nodes: 2
● For drain nodes: 2
● For well nodes: 2
● For ponding nodes: 2
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A
Symbols

A.1  List of symbols
Symbol Name

Vector containing the body force

Strain interpolation matrix

Elastic material stiffness matrix
representing Hooke's law

Yield function

Plastic potential function

Permeability matrix

Stiffness matrix

Differential operator

Material stiffness matrix

Matrix with shape functions

(Excess) pore pressure

Time

Boundary tractions

Vector with displacement components
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Symbol Name
Vector with nodal displacements

Volume

Weight factor

Volumetric weight

Vector with strain components

Plastic multiplier

, , Local coordinates

Vector with stress components

Integration constant
(explicit ω=0; implicit: ω=1.
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B
Calculation Process

B.1  Finite element calculation process based on the
elastic stiffness matrix

Calculation Process Formulation
Read input data

Form stiffness matrix

New step

Form new load vector

Form reaction vector

Calculate unbalance

Reset displacement increment

New iteration

Solve displacements

Update displacement increments

Calculate strain increments ; 
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Calculation Process Formulation

Calculate stresses:
 

Form reaction vector

Calculate unbalance

Calculate error

Accuracy check if  new iteration

Update displacements

Write output data (results) -

If not finished  new step -

Finish -
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C
Understanding the iterative

convergence process

C.1  Introduction
In nonlinear problems, convergence in the iteration procedure (see B Calculation Process (p.
69)) needs to be considered. PLAXIS provides information about the different convergence
checks for each iteration of the calculation, which allows users to monitor the progress of the
analysis run.

Note: The convergence criteria information is produced by the PLAXIS Convergence
tool and stored in the called Convergence log file. For more information
on the Convergence log file please Visit the Reference Manual>Advanced
tools>Convergence log for PLAXIS calculations.

C.2  Quasi-Newton Raphson method
In nonlinear problems the governing balance equations must be solved iteratively by means of
the Newton-Raphson method. The iterative process as schematized in Figure C–1 (p. 72)
considers the update of the incremental displacement as:
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Figure C–1: Iteration process

The process is repeated iteratively until the out-of-balance force (fext−fint,i) becomes small
compared the applied force itself fext. A disadvantage of this method is that the stiffness matrix
K has to be set up at every iteration and the time-consuming decomposition of the matrix (to
compute its inverse) has to be performed every iteration as well.

It is for this computation cost of finding a new stiffness matrix that PLAXIS instead uses a Quasi-
newton method inverse at every iteration. The Quasi-Newton method essentially uses the
information of previous solution vectors and out-of-balance force vectors during the increment
to achieve a better approximation (see Figure C–2 (p. 73)) . Unlike Regular Newton-Raphson,
the Quasi-Newton method does not set up a completely new stiffness matrix every iteration and
is computationally significantly more efficient.
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Figure C–2: Quasi-Newton iteration
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